Lines of Constant Physics in a 5-d Gauge-Higgs Unification Scenario

Maurizio Alberti

with N. Irges, F. Knechtli and G. Moir

Bergische Universität Wuppertal

24th July, 2016 Lattice 2016, Southampton

GHU on the Lattice	Orbifold Model	Dimensional Reduction	LCPs	
Motivation				

The Standard Model's Higgs: Unknowns

- Quadratic sensitivity of Higgs mass to UV cut-off.
- Origin of potential responsible for spontaneous symmetry breaking.

Can we address these puzzles?

GHU on the Lattice	Orbifold Model	Dimensional Reduction	LCPs	
Motivation				

The Standard Model's Higgs: Unknowns

- Quadratic sensitivity of Higgs mass to UV cut-off.
- Origin of potential responsible for spontaneous symmetry breaking.

Can we address these puzzles?

The Extra-Dimensional Approach

- ► Higgs field is associated with the extra-dimensional components of the gauge field [Manton, 1979].
- Higgs potential is generated through quantum effects [Hosotani, 1983; ...].

(see [Knechtli, Rinaldi, 2016] for a current review of lattice approaches/results)

GHU on the Lattice Orbifold Model Spectrum Dimensional Reduction LCPs Conclusions
Lattice Formulation

Wilson Gauge action:

$$\begin{split} S^{orb}_W &= \frac{\beta_4}{2} \sum_{P_4} w \cdot \mathrm{tr} \left\{ 1 - P_4 \right\} + \frac{\beta_5}{2} \sum_{P_5} \mathrm{tr} \left\{ 1 - P_5 \right\} \\ & w = \begin{cases} \frac{1}{2} & \text{plaquette on boundary} \\ 1 & \text{otherwise} \end{cases} \end{split}$$

5-d Orbifold

 The bare anisotropy is denoted by

$$\gamma = \sqrt{\beta_5/\beta_4} \equiv a_4/a_5$$

- ► N₅ is the number of *links* in the fifth dimension
- The weight w is due to the orbifold boundary conditions.

	Orbifold Model	Dimensional Reduction	LCPs	
Reminder				

Requirements for a viable model

- □ it should reproduce the right physics.
- the fifth dimension should be "hidden".
- the physics should be cut-off independent.

Source [Alberti et al., 2015]

GHU on the Lattice Orbifold Model Spectrum Dimensional Reduction

Spectrum

Orbifold Model

Spectrum

Dimensional Reducti

Conclus

Spectrum

Spectrum

Dimensional Reduction

Dimensional Reduction

- ► The orbifold's *SU*(2) bulk feels the fifth dimension.
- But near the PT the boundary remains clearly four-dimensional
- \Rightarrow dimensional reduction via localization

Gauge-Higgs Unification on the Orbifold

Does it work?

Requirements of a viable model

 \mathbf{M} it should reproduce the right physics.

 \checkmark the fifth dimension should be "hidden".

- ☐ the physics should be cut-off independent.
 - \rightarrow Search for Lines of Constant Physics

Definition

a set of points (β_4, β_5, N_5) of which at least two independent physical quantities f_1 , f_2 remain constant. For example we could choose

$$f_1 = \rho \equiv \frac{m_H}{m_Z}$$
$$f_2 = m_H R$$

and vary $a_4 m_H$ to make sure that the lattice spacing is changing along the line.

Definition

a set of points (β_4, β_5, N_5) of which at least two independent physical quantities f_1 , f_2 remain constant. For example we could choose

$$f_1 = \rho \equiv \frac{m_H}{m_Z}$$
$$f_2 = m_H R$$

and vary $a_4 m_H$ to make sure that the lattice spacing is changing along the line.

Construction

- As a first step, look for $\rho = const$ lines at various N_5 values.
- An LCP with $m_H \cdot R = const$ will intersect these lines in each N_5 plane.

GHU on the Lattice Orbifold Model Spectrum Dimensional Reduction LCPs Conclusions

Search Region: 1.0 $N_5 = 4$ ۸ $N_{5} = 6$ $N_5 = 8$ ٠ 0.9 . 1.8 0.8 1.4 2.4 2.8 3.2 3.6 ω_{10} * • * ÷ ٠ 0.6 Bulk-driven phase transition Boundary-driven phase transition 0.2 2.0 1.5 2.5 3.0 3.5 β_4

Maurizio Alberti, Lines of Constant Physics in a 5-d Gauge-Higgs Unification Scenario

LCP III

Notes:

- Masses are extracted from solving the GEVP.
- \triangleright β_5 (at fixed β_4) depends slightly on N_5 .
- Errors are statistical.
- LCP could move a little with higher precision.

LCP III

 $p \simeq 1.15$

Notes:

 Masses are extracted from solving the GEVP.

LCPs

- $b_{5} \text{ (at fixed } \beta_{4} \text{)} \\ \text{depends slightly on} \\ N_{5}.$
- Errors are statistical.
- LCP could move a little with higher precision.
- x coords. are slightly shifted for clarity.

LCP III

$p \simeq 1.15$

Notes:

- Masses are extracted from solving the GEVP.
- $b_{5} \text{ (at fixed } \beta_{4} \text{)} \\ \text{depends slightly on} \\ N_{5}.$
- Errors are statistical.
- LCP could move a little with higher precision.
- x coords. are slightly shifted for clarity.

GHU on the Lattice Orbifold Model Spectrum Dimensional Reduction LCPs Conclusions

Highlights

 \Rightarrow Despite non-renormalizability of the theory, scaling violations are excluded to a precision of ca. 10%.

"Physical" LCP exists (preliminary!)

$N_5 \mid \beta_4$	eta_5	$a_4 m_Z$	$rac{m_H}{m_Z}$	$\frac{m_{Z'}}{m_Z}$	$\frac{m_{H'}}{m_Z}$
$ \begin{array}{c c c} N_5 = 4 & 2.7 \\ N_5 = 6 & 2.8 \end{array} $	0.845	0.145(4)	1.47(10)	2.40(16)	4.14(20)
	0.89	0.143(4)	1.42(9)	2.39(12)	4.98(36)

 GHU on the Lattice
 Orbifold Model
 Spectrum
 Dimensional Reduction
 LCPs
 Conclusions

 Conclusions and Outlook
 Summary

 GHU on the orbifold addresses the problem of the Higgs' naturalness.
 It satisfies all the (basic) requisites: mass hierarchy, dimensional reduction, cut-off independence.

 General Conclusions

▶ It predicts excited states with masses $m_{Z'} \simeq 2.3 \cdot m_Z$ and $m_{H'} \simeq 4.3 \cdot m_Z$.

Outlook

- Short term: construct a standard model-like line of constant physics with $\rho = 1.39$.
- Long term: move to higher group to incorporate all the degrees of freedom of the standard model.

 GHU on the Lattice
 Orbifold Model
 Spectrum
 Dimensional Reduction
 LCPs
 Conclusions

 Conclusions and Outlook
 Summary

 GHU on the orbifold addresses the problem of the Higgs' naturalness.
 It satisfies all the (basic) requisites: mass hierarchy, dimensional reduction, cut-off independence.

 General Conclusions

▶ It predicts excited states with masses $m_{Z'} \simeq 2.3 \cdot m_Z$ and $m_{H'} \simeq 4.3 \cdot m_Z$.

Outlook

- Short term: construct a standard model-like line of constant physics with $\rho = 1.39$.
- Long term: move to higher group to incorporate all the degrees of freedom of the standard model.

Thank you for your attention!

Maurizio Alberti, Lines of Constant Physics in a 5-d Gauge-Higgs Unification Scenario

		Orbifold Model		Dimensional Reduction	LCPs	Conclusions
efere	nces					
[K	nechtli, Rinaldi, 20	016] Extra-dimensio	nal models on th	e lattice, arXiv:1605.04341.		
[M	lanton, 1979] A	New Six-Dimensional	Approach to the	Weinberg-Salam Model, Nucl	Phys. B158	(1979)
14	1-153.					
[H	osotani, 1983] D	ynamical Gauge Sym	metry Breaking a	as the Casimir Effect, Phys. Le	tt. B129 (19	83) 193.
[vo	on Gersdorff, Irges	and Quiros, 2002]	Bulk and brane r	adiative e ects in gauge theorie	s on orbifolds	, Nucl. Phys.
B6	35 (2002) 127-15	7.				
[D	imopoulos <i>et al.</i> , 2	2002] The Phase Di	agram for the an	isotropic $SU(2)$ Adjoint Higgs	s Model in 5L	D: Lattice
Ev	vidence for Layered	<i>Structure</i> , Phys, Rev	. D65 (2002) 07	74505.		
[K	nechtli <i>et al</i> ., 2011	I] On the phase stru	icture of five-din	nensional $SU(2)$ gauge theorie	s with anisot	ropic
со	<i>uplings</i> , Nucl. Phy	rs. B856 (2012) 74-9	4.			
[D	el Debbio <i>et al</i> ., 2	013] The transition	to a layered pha	se in the anisotropic ve-dimens	ional $SU(2)$	Yang-Mills
the	<i>eory</i> , Phys. Lett. I	B724 (2013), no. 1-3	133-137.			
[lŋ	ges, Knechtli, 200	7] Lattice gauge the	ory approach to	spontaneous symmetry breakin	g from an ex	tra
diı	mension, Nucl. Phy	ys. B775 (2007) 283	-311.			
[ls	hiyama <i>et al</i> ., 201	0] Symmetry and Z	(2) Orbifolding	Approach in Five-dimensional I	Lattice Gauge	Theory,
Pr	og. Theor. Phys.	123 (2010) 257-269.				
[A	lberti <i>et al</i> ., 2015]	Five-dimensional G	auge-Higgs Unifi	cation: a Standard Model-like	Spectrum, J.	High Energ.
Ph	nys. 2015 (2015) 1	.59.				
[D	vali, Shifman, 199	7] Domain walls in	strongly coupled	theories, Phys. Lett. B396 (19	997) 64-69.	

Maurizio Alberti, Lines of Constant Physics in a 5-d Gauge-Higgs Unification Scenario

R

Static Potential

Dimension	Yukawa	Coulomb	Confining
4	$c_0 - c_1 \frac{e^{-m_Z r}}{r}$	$c_0 - \frac{c_1}{r}$	$c_1 = \sigma c_1$
5	$c_0 - c_1 \frac{K_1(m_Z r)}{r}$	$c_0 - \frac{c_1}{r^2}$	$c_0 + o_1 - \frac{1}{r}$

Maurizio Alberti, Lines of Constant Physics in a 5-d Gauge-Higgs Unification Scenario

Constructed from Polyakov Loops

Higgs d.o.f come from Polyakov loops in extra dimension

►
$$p = l \ g \ l^{\dagger} \ g^{\dagger}$$

► $h = [p - p^{\dagger}, g]/(4N_5)$

$$g^{-1} \qquad 1 \qquad g \qquad 1$$

$$x_5 = 0 \qquad x_5 = \pi R$$
Basis: $\mathcal{H} = \operatorname{tr} [hh^{\dagger}]$; $\mathcal{P} = \operatorname{tr} [p]$ (increase via smearing)

Constructed from vector operators

▶ several combinations give the correct quantum numbers: $tr(Z^2)$, $tr(Z)^2$, $tr(Z_i^2Z_k^2)$ and $tr(Z_i^2)tr(Z_k^2)$.

• $tr(Z)^2$ found to have a good overlap with H'.

Z Boson Operators

Z boson d.o.f come from vector Polyakov loops

- $\blacktriangleright \mathcal{Z} = \operatorname{tr} \left[g \ \alpha \ U^{\dagger} \ \alpha \right]$
- $\blacktriangleright \mathcal{Z}' = \operatorname{tr} \left[g \ U \ l \ U^{\dagger} \ l^{\dagger} \right]$
- Order parameters for SSB

Maurizio Alberti, Lines of Constant Physics in a 5-d Gauge-Higgs Unification Scenario

GHU on the Lattice Orbifold Model Spectrum Dimensional Reduction LCPs Conclusions
Orbifold BC

Reflection

The reflection operation acts on both the lattice points

$$\bar{n} \equiv \mathcal{R}n = (n_{\mu}, -n_5)$$

and the gauge links

 $\mathcal{R}U(n,\mu) = U(\bar{n},\mu), \qquad \mathcal{R}U(n,5) = U^{\dagger}(\bar{n}-\hat{5},5) \; .$

Group conjugation

Acts only on the gauge links

$$\mathcal{T}_g U(n,M) = g \ U(n,M) \ g^{-1} \ ,$$

with g^2 an element of the centre of SU(2) (we choose $g = -i\sigma^3$)

Masses at $\rho \simeq 1.15$

	N_5	β_4	β_5	a_4m_Z	$\frac{m_H}{m_Z}$	$\frac{m_{Z'}}{m_Z}$	$\frac{m_{H'}}{m_Z}$
-	$N_{5} = 4$	2.6 2.7	0.862 0.85	0.149(4) 0.155(3)	$1.14(6) \\ 1.11(6)$	2.55(13) 2.11(12)	3.97(21) 4.50(25)
	$N_{5} = 6$	2.6 2.8 3.0 3.5	0.90 0.895 0.882 0.88	0.132(4) 0.136(6) 0.143(5) 0.137(5)	1.19(8) 1.17(7) 1.15(10) 1.14(7)	2.34(15) 2.49(15) 2.21(14) 2.19(17)	4.62(52) 4.70(43) 4.12(42) 4.25(31)
	$N_{5} = 8$	3.0 3.5	0.936 0.935	0.132(4) 0.131(5)	1.12(6) 1.09(7)	2.25(14) 2.21(16)	4.76(37) 4.43(39)

