Lattice 2016 Southampton, UK

Radiative contribution to the effective potential in a composite Higgs model

> B. Svetitsky Tel Aviv University

TACO Collaboration: T. DeGrand, M. Golterman, W. Jay, E. Neil, Y. Shamir, BS (1606.02695)

1. The Promised Land:

SU(5)/SO(5) sigma model *via* SU(4) gauge theory

(Ferretti 1404.7137)

2. Latticeland:

SU(4) gauge theory, $N_f = 2$ sextets \implies global SU(4) \rightarrow SO(4)

3. First ingredient of the Higgs potential via $\Pi_{LR}(q^2)$

— much in common with $\pi^{\pm}-\pi^{0}$ EM mass splitting in QCD (JLQCD 2008))

COMPOSITE HIGGS – BASICS

The aim: a light Higgs boson, protected naturally from high-energy scales

- Hypercolor: new strong sector with scale $f \gg v$
- Hypercolor theory has spontaneous symmetry breaking: Goldstone bosons will include the Higgs multiplet so $m_h = 0$ and in fact V(h) = 0
- Couple to gauge bosons/fermions of SM, generate

$$V_{\text{eff}}(h) = (\alpha - 4\beta)(h/f)^2 + O(h^4)$$

gauge bosons: $\alpha = (3g^2 + g'^2)C_{LR} > 0$ (Witten 1983)today's talktop quark: $\beta = -(y_t^2/2)C_{top}$ probably > 0[S.E.P.]

• If $4\beta > \alpha$ then we have EWSB (and maybe $v = \sqrt{2} \langle h \rangle \ll f$)

THE MODEL

(Ferretti 2014)

Wanted: SU(5)/SO(5) sigma model for Goldstone bosons — $SO(5) \supset [SU(2)_L \times SU(2)_R]_{EW}$ \implies demands real representation of hypercolor for fermions \implies restricts color group severely if asymptotically free

Solution: SU(4) gauge theory with sextet fermions - a real representation

With N_f Dirac flavors we would have $SU(2N_f) \rightarrow SO(2N_f)$;

— but with 5 Majorana fermions we can have $SU(5) \rightarrow SO(5)$ as desired.

THE LATTICE MODEL (for today)

 $N_f = 2$ Dirac fermions: $SU(4) \rightarrow SO(4)$

CALCULATING THE HIGGS POTENTIAL — gauge contribution

$$C_{LR} = \int_0^\infty dq^2 q^2 \Pi_{LR}(q^2)$$

where

$$(q^2 \delta_{\mu\nu} - q_\mu q_\nu) \Pi_{LR}(q^2) = -\int d^4 x \, e^{iqx} \left\langle J^L_\mu(x) J^R_\nu(0) \right\rangle$$

Analytical guess — saturate with lowest resonances ("Minimal Hadron Approx"):

$$\Pi_{LR}(q^2) \approx \frac{f_{\pi}^2}{q^2} - \frac{f_{\rho}^2}{q^2 + m_{\rho}^2} + \frac{f_{a_1}^2}{q^2 + m_{a_1}^2}$$

LATTICE CALCULATION of C_{LR}

- Dynamical fermions: Wilson-clover fermions, nHYP smearing with suppression of dislocations
- Currents calculated from propagators of overlap fermion kernel with valence mass $m_v \neq 0$
- Take chiral limit $m_v \rightarrow 0$ currents satisfy exact chiral Ward identities, give C_{LR} .

LATTICE CALCULATION

(two ensembles — two *sea* actions):

• Π_{LR} is the transverse part of

$$\frac{1}{2}\delta_{ab}\Pi^{\text{lat}}_{\mu\nu}(q) = -\sum_{x} e^{iqx} \left\langle J^{L}_{\mu a}(x) J^{R}_{\nu b}(0) \right\rangle$$

• Direct summation:

$$C_{LR}(m_v) = \frac{16\pi^2}{V} \sum_{q_\mu} \Pi_{LR}(q_\mu)$$

while modeling pole at q = 0 via

$$\Pi_{LR}(q_{\mu}) \simeq p + \frac{f_{\pi}^2}{q^2}$$

- The constant we want is $\lim_{m_v \to 0} C_{LR}(m_v)$.
- Discrepancy between the two ensembles

LATTICE CALCULATION

(two ensembles — two *sea* actions):

0.1

• A hint: Integrating the Minimal Hadron Approx 0.03 \bigcirc Ensemble 1 (in the chiral limit*) gives Ensemble 2 $C_{LR} \approx f_{\pi}^2 \frac{m_{a_1}^2 m_{\rho}^2}{m_{a_1}^2 - m_{\rho}^2} \log\left(\frac{m_{a_1}^2}{m_{\rho}^2}\right),$ 0.02 i.e., $C_{LR} \propto f_{\pi}^2$. C_{LR} 0.01 * via the Weinberg sum rules 0 0.02 0.04 0.06 0.08 0 m_{v}

LATTICE CALCULATION

(two ensembles — two *sea* actions):

• A hint: Integrating the *Minimal Hadron Approx* (in the chiral limit*) gives

$$C_{LR} \approx f_{\pi}^2 \frac{m_{a_1}^2 m_{\rho}^2}{m_{a_1}^2 - m_{\rho}^2} \log\left(\frac{m_{a_1}^2}{m_{\rho}^2}\right),$$

i.e., $C_{LR} \propto f_{\pi}^2$.

• so look at the ratio $C_{LR}/f_{\pi}^2 \Longrightarrow$

* via the Weinberg sum rules

ALTERNATIVE PATH to C_{LR} — Fit to the MINIMAL HADRON formula, integrate $\int dq^2 q^2 \Pi_{LR}$

$$\Pi_{LR}(q^2) \approx \frac{f_{\pi}^2}{q^2} - \frac{f_{\rho}^2}{q^2 + m_{\rho}^2} + \frac{f_{a_1}^2}{q^2 + m_{a_1}^2} \qquad (5 \text{ free parameters})$$

Ray along one axis:

Diagonal ray:

Result of $\int dq^2 q^2 \Pi_{LR}$:

- Consistent with direct summation in the chiral limit (hatched points).
- Individual fits: Excellent χ^2 with *MHA* for m_v not too large.
- f_{π} consistent with spectroscopic value used above. ρ , a_1 not so much.
- We have studied systematics of the fit/integration procedures.
- Consistent results for C_{LR}/f_{π}^2 between ensembles, but no continuum limit yet.

SUPPLEMENTAL

CALCULATING THE HIGGS POTENTIAL — gauge contribution

