Intro.	Strat.	Tests	Results	Concl.
0000	00	000	00	

Determination of topological charge following several definitions

and preliminary results of χ_t in $N_f = 1 + 2$

Julien Frison, Ryuichiro Kitano, Nori Yamada KEK

34rd International Symposium on Lattice Field Theory Lattice'16 - Southampton - July 25th, 2016

Intro.	Strat.	Tests	Results	Concl.
0000	00	000	00	

Introduction

- The strong CP problem today
- Instanton contribution to the mass
- Topology on the lattice
- Topology ambiguity or mass ambiguity?
- 2 Strategy
 - Objective
 - Ensembles
- 3 Tests on topological charge determination
 - Gradient flow at large flow time
 - Continuum limit and universality
 - Topological Charge Density Correlator
- 4 Preliminary results in $N_f = 1 + 2$
 - Spectrum and PCAC masses
 - (m_u, χ_t) plot

5 Conclusion

- Why is there no $\theta F \tilde{F}$ term in the Lagrangian?
- Trivial solution: $m_u e^{i\theta} = 0$
- Other popular solution: Peccei-Quinn mechanism (axion)

$m_u = 0$ solution

- New lattice computations make $m_u^{\overline{\mathrm{MS}}} = 0$ very unlikely
- Is $m_u = 0$ physically defined without massless pion?
- Is perturbative $\overline{\mathrm{MS}}$ really what we need?
- Non-perturbative contributions make this solution ill-defined
- What latticists should really check is whether $\chi_t^{\rm physical}=0$

Instanton contribution to the mass

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Intro.	Strat.	Tests	Results	Concl.
○○●○	00	000	00	
Topology	on the lattice			

- On the lattice, Q is ill-defined too!
- Only defined on smooth configurations
- How arbitrary are the definitions? Are some better than others?
- Bosonic versus fermionic definitions
- Does continuum limit trivially remove ambiguity? Even with Wilson fermions? On Q or on $\langle Q^2 \rangle$?

Topology ambiguity or mass ambiguity?

- Mass and topology are related through Ward identities
- Earlier works have tried to make both definitions compatible [Bochicchio'84-85-86]
- In general, arbitrary definitions will break singlet Ward identities at finite lattice spacing, and $\chi_t(m_u = 0) = 0$ is not guaranteed.
- In $N_{\rm f} = 2 + 1$, $\chi_t(m_u = 0) = 0$ has been empirically checked, agreeing with ChPT prediction $\chi_t^{-1} \propto \sum m^{-1}$
- What in $N_{\rm f} = 1 + {
 m smthg}$? "SU(1) ChPT" makes no sense.

Intro.	Strat.	Tests	Results	Concl.
0000	●○	000	00	
Objective				

We want to determine χ_t at $m_u^{PCAC} = 0$

- In $N_{
 m f}=1+2$, where $m_d=m_s^{
 m physical}$ so that the 't Hooft vertex effect is amplified
- Only m_u will be taken close to zero
- We use Wilson-like fermions to study the worst scenario
- We choose parameters similar to BMW HEX2 $N_{\rm f} = 2 + 1$ ensembles

Intro.	Strat.	Tests	Results	Concl.
0000	○●	000	00	
Ensembles				

$N_{ m f} = 2 + 1$ Ensemble (cross-check)

 $\beta=3.31$ Lüscher-Weisz w/ HEX2 Clover (a $\sim 0.116~{\rm fm}$), $m_{ud}^{\rm bare}=-0.07,~m_s^{\rm bare}=-0.04,~16^3\times32$

$N_{\rm f} = 1 + 2$ Ensembles

 $m_u^{\rm bare}=-0.07,-0.093,-0.09756,\ m_{ds}^{\rm bare}=-0.04,\ 16^3\times32$ A larger volume and a finer lattice are both being generated

Other Ensembles

Many quenched ensembles have been used for tests, either generated for this project or for another project

Intro.	Strat.	trat. Tests		Concl.
0000	00	000	00	
<u> </u>				

Gradient flow at large flow time

Remark: c_1 increases both stability and convergence speed $(n_c = (3 - 15c_1)\tau$ [Alexandrou:1509.04259])

Main ensembles

Continue	. It is the second of			
0000	00	000	00	
Intro.	Strat.	Tests	Results	Concl.

- Quenched ensembles at fixed physical volume
- Strong correlations at finest ensemble
- Nevertheless individual Q values almost never agree/plateau
- The closer the c₁ the stronger the correlation

Topological Charge Density Correlator

イロト 不得 トイヨト イヨト

э

Intro.	Strat.	Tests	Results	Concl.
0000	00	000	•0	

Spectrum and PCAC masses

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

Intro.	Strat.	Tests	Results	Concl.
0000	00	000	○●	
(m_{μ}, χ_t) plo	t			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Intro.	Strat.	Tests	Results	Concl.
0000	00	000	00	

- We suggest that the m_u = 0 solution to the strong CP problem should be assessed in terms of χ_t and not m_u
- we have presented a strategy to estimate or bound the mistake the PCAC method could make
- \bullet We have presented preliminary results in $\mathit{N}_{\rm f}=1+2$
- Unfortunately we have not been able to explore much of the expensive $Index(D_{ov})$ approach
- We have large statistical errors for the moment
- We need lighter quarks, finer ensembles, and probably larger volumes
- Investigating $m_u \sim 0$ ($\chi_t \sim 0$) may require specific methods (see hep-lat/1606.07175)

Intro.	Strat.	Tests	Results	Concl.
0000	00	000	00	

Thanks for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ