Towards a determination of the ratio of the kaon to pion decay constants

V. G. Bornyakov, R. Horsley, Y. Nakamura, H. Perlt, D. Pleiter, P. E. L. Rakow, G. Schierholz, A. Schiller, H. Stüben and J. M. Zanotti

- QCDSF-UKQCD Collaboration -

Vladivostok – Edinburgh – RIKEN (Kobe) – Leipzig – FZ (Jülich) – Liverpool – DESY – Hamburg – Adelaide

Lattice 2016, Southampton, UK

Thursday 28/7/16 15:00 (67 1003)

introduction/Strategy	Lattice	PQ and tuning	Decay constants	Conclusions
QCDSF rela	ited talks with 2	2+1 flavours:		
 James Transve 	Zanotti rse spin densities	of octet baryons	Monday 25/7/16 15:35 (B2a 2077)
Alexand Hadron	der Chambers structure from t	he Feynman-Hellmar	Monday 25/7/16 17:30 (B2a 2077)
Gerrit S Running	Schierholz g coupling from \	Nilson flow for three	Monday 25/7/16 18:25 quark flavors	(67 1007)
 Holger Partially 	Perlt conserved axial	vector current and a	Tuesday 26/7/16 17:50 (B2a 2077)
• Paul R Finite s	akow ize and infra-red	effects in QCD plus	Wednesday 27/7/16 9:20	(67 1003)
Ross Ye Infrared	oung features of dyna	mical QED+QCD si	Wednesday 27/7/16 9:40 mulations	(67 1003)

Intr	oductio	n/Stra	ategy
------	---------	--------	-------

Lattice

PQ and tuning

Decay constant

Conclusions

Introduction

- strategy
- SU(3) flavour symmetry breaking expansions
- determination of coefficients and tuning
- results

2+1 simulations: many paths to approach the physical point $[m_u = m_d \equiv m_l case]$

QCDSF: extrapolate from a point on the $SU(3)_F$ flavour symmetry line to the physical point

$$(m_0, m_0) \longrightarrow (m_l^*, m_s^*)$$

Choice here: keep the singlet quark mass \overline{m} constant

$$\overline{m}=m_0=\frac{1}{3}\left(2m_l+m_s\right)$$

,			
QCDSF strategy		[arXiv:1102.5300]	
• develop $SU(3)_F$ flavour sy	ymmetry breakin	ng expansion for hadron	
masses	, <u>,</u>	0	

• expansion in:

Introduction/Strategy

SU(3) flavour symmetric point $\delta m_q = 0$

$$\delta m_q = m_q - \overline{m}, \quad \overline{m} = \frac{1}{3}(m_u + m_d + m_s) = m_0$$

- expansion coefficients are functions of \overline{m}
- trivial constraint

$$\delta m_u + \delta m_d + \delta m_s = 0$$

• path called 'unitary line' as expand in both sea and valence quarks

K⁰(dš) K⁺(uš)

SU(3) flavour symmetry breaking expansions

• octet pseudoscalar meson masses:

$$M^{2}(a\overline{b}) = M^{2}_{0\pi} + \alpha(\delta m_{a} + \delta m_{b}) + \beta_{0}\frac{1}{6}(\delta m^{2}_{u} + \delta m^{2}_{d} + \delta m^{2}_{s}) + \beta_{1}(\delta m^{2}_{a} + \delta m^{2}_{b}) + \beta_{2}(\delta m_{a} - \delta m_{b})^{2} + \dots \qquad [a, b = u, d, s \text{ (outer ring)}]$$

• octet pseudoscalar meson decay constants:

$$f(a\overline{b}) = F_{0\pi} + G(\delta m_a + \delta m_b) + H_0 \frac{1}{6} (\delta m_u^2 + \delta m_d^2 + \delta m_s^2) + H_1 (\delta m_a^2 + \delta m_b^2) + H_2 (\delta m_a - \delta m_b)^2 + \dots \qquad [a, b = u, d, s \text{ (outer ring)}]$$

• octet baryons - equivalent expansions

Introduction/Strategy	Lattice	PQ and tuning	Decay constants	Conclusions

Another useful ingredient:

• Consider a flavour singlet quantity

 $X_S(m_u, m_d, m_s)$

• Simple property:

 $X_{S}(\overline{m} + \delta m_{u}, \overline{m} + \delta m_{d}, \overline{m} + \delta m_{s}) = X_{S}(\overline{m}, \overline{m}, \overline{m}) + O((\delta m_{q})^{2})$

Introduction/	Strategy
---------------	----------

Lattice

PQ and tuning

Decay constant

Conclusions

- Already encoded in the SU(3) flavour symmetric breaking expansions (together with $\delta m_u + \delta m_d + \delta m_s = 0$)
- More general:

 $X_{\mathcal{S}}$ (a flavour singlet quantity) has a stationary point about the SU(3) flavour symmetric line

- X_S invariant under u, d, s permutations (by definition)
- Expand X_S about a point on the SU(3)-flavour line

 $X_S(\overline{m} + \delta m_u, \overline{m} + \delta m_d, \overline{m} + \delta m_s)$

$$= X_{S}(\overline{m},\overline{m},\overline{m}) + \frac{\partial X_{S}}{\partial m_{u}}\Big|_{0} \delta m_{u} + \frac{\partial X_{S}}{\partial m_{d}}\Big|_{0} \delta m_{d} + \frac{\partial X_{S}}{\partial m_{s}}\Big|_{0} \delta m_{s} + O((\delta m_{q})^{2})$$

On the symmetric line:

$$\frac{\partial X_S}{\partial m_u}\Big|_0 = \frac{\partial X_S}{\partial m_d}\Big|_0 = \frac{\partial X_S}{\partial m_s}\Big|_0$$

together with $\delta m_u + \delta m_d + \delta m_s = 0$ implies the result

Introduction/Strategy

Lattice

PQ and tuning

Decay constant

Conclusions

Singlet quantities – many possibilities

• Pseudoscalar mesons: (centre of mass)

$$X_{\pi}^{2} = \frac{1}{6}(M_{K^{+}}^{2} + M_{K^{0}}^{2} + M_{\pi^{+}}^{2} + M_{\pi^{-}}^{2} + M_{K^{-}}^{2}) \xrightarrow[s_{\text{trial}}]{}_{s_{\text{trial}}} \sum_{s_{\text{trial}}}^{s_{\text{trial}}} (410 \text{ MeV})^{2}$$

• Pseudoscalar decay constants: (centre of mass)

stable under QCD

$$X_{f_{\pi}} = \frac{1}{6} (f_{K^+} + f_{K^0} + f_{\pi^+} + f_{\pi^-} + f_{\overline{K}^0} + f_{K^-})$$

• Many other possibilities

$$X_{5}^{2} = \begin{cases} \frac{1}{6}(M_{\rho}^{2} + M_{n}^{2} + M_{\Sigma^{+}}^{2} + M_{\Xi^{0}}^{2} + M_{\Xi^{0}}^{2}) & S = N & \text{baryon octet} \\ \frac{1}{2}(M_{\Sigma}^{2} + M_{\Lambda}^{2}) & S = \Lambda & \text{baryon octet} \\ M_{\Sigma^{+}}^{2}, \frac{1}{2}(M_{\Delta}^{2} + M_{\Xi^{+}}^{2}) & S = \Sigma^{+}, \Delta & \text{baryon decuplet, unstable under QCD} \\ \frac{1}{6}(M_{K^{+}}^{2} + M_{K^{+}0}^{2} + M_{\rho^{+}}^{2} + M_{\rho^{-}}^{2} + M_{K^{+}0}^{2} + M_{K^{+}-}^{2}) & S = \rho & \text{vector octet} \\ 1/t_{0}^{2}, 1/t_{0}, 1/w_{0}^{2} & S = r_{0}, t_{0}, w_{0} & \text{force, Wilson flow scales} \end{cases}$$

Introduction/Strategy	Lattice	PQ and tuning	Decay constants	Conclusions
1				

Lattice

- O(a) NP improved clover action
 - tree level Symanzik glue
 - mildly stout smeared 2 + 1 clover fermion
 - $\beta = 5.40, 5.50, 5.65, 5.80 \ [24^3 \times 48, 32^3 \times 64, 48^3 \times 96]$

$$m_q = \frac{1}{2} \left(\frac{1}{\kappa_q} - \frac{1}{\kappa_{0c}} \right)$$

 κ_{0c} is chiral limit along symmetric line

$$\delta m_q = m_q - m_0 = \frac{1}{2} \left(\frac{1}{\kappa_q} - \frac{1}{\kappa_0} \right)$$

• typical $M_{\pi}^{lat 2}$ values

Introduction/Strategy	Lattice	PQ and tuning	Decay constants	Conclusions

X_S^2 determination:

• $(\beta, \kappa_0) = (5.50, 0.120900), (5.80, 0.122810)$

• $X_{t_0}^2$, $X_{w_0}^2$, X_{π}^2 , X_{ρ}^2 , $X_N^2 \approx X_{\Lambda}^2$, $X_{f_{\pi}}$ along the $\overline{m} = \text{const.}$ line

[in LH plot $M_\pi \sim$ 430 MeV - 280 MeV; RH \sim 465 MeV - 220 MeV]

Introduction/Strategy	Lattice	PQ and tuning	Decay constants	Conclusions

Alternatively:

• we have

$$\frac{X_{\pi}^2}{X_s^2} = \frac{(2M_K^2 + M_{\pi}^2)/3}{X_s^2}$$

giving

for $S = N, \rho, t_0, w_0, ...$

Path in quark mass plane

•
$$S = N, \rho, t_0, w_0, \dots$$

• $(\beta, \kappa_0) = (5.50, 0.120900) \rightarrow (5.50, 0.120950 \approx \kappa_0^*)$

Main observations:

- X_S appears constant over a large range from the SU(3) flavour symmetric line
- Paths from a point on the SU(3) flavour symmetric line are linear
- Need to find this point: m_0 (ie κ_0)

Introduction/Strategy	Lattice	PQ and tuning	Decay constants

Unitary line

• linear behaviour in SU(3) flavour symmetry breaking expansions

Introduction/Strategy	Lattice	PQ and tuning	Decay constants	Conclusions

Programme

- Determine κ_0
- Determine expansion coefficients: $\alpha, ...$ [function of $\overline{m} \equiv m_0$ only]
- Use $M_{\pi}^{*\,2}$, $M_{K}^{*\,2}$ to determine δm_{l}^{*} , δm_{s}^{*}
- Estimate (in this talk) decay constants at physical point

Partially quenching

- Unitary range rather small so introduce PQ partially quenching (ie valence quark masses \neq sea quark masses) and (N)NLO
- Furthermore can generalise to different valence quark masses, μ_q to sea quark masses m_q without increasing number of expansion coefficients

$$\delta\mu_q = \mu_q - \overline{m}$$

• pseudoscalar meson octet

$$\begin{split} \widetilde{M}^2(a\overline{b}) &= 1 + \widetilde{\alpha}(\delta\mu_a + \delta\mu_b) \\ &- (\frac{2}{3}\widetilde{\beta}_1 + \widetilde{\beta}_2)(\delta m_u^2 + \delta m_d^2 + \delta m_s^2) + \widetilde{\beta}_1(\delta\mu_a^2 + \delta\mu_b^2) + \widetilde{\beta}_2(\delta\mu_a - \delta\mu_b)^2 \end{split}$$

• pseudoscalar decay constants Useful: $\tilde{t} = f/X_{f_{\pi}}$; $\tilde{G}(\overline{m}) = G/F_{0\pi}^2, \dots$

$$\begin{split} \tilde{f}_{\mathrm{ps}}(a\overline{b}) &= 1 + \tilde{G}(\delta\mu_a + \delta\mu_b) \\ &- (\frac{2}{3}\tilde{H}_1 + \tilde{H}_2)(\delta m_u^2 + \delta m_d^2 + \delta m_s^2) + \tilde{H}_1(\delta\mu_a^2 + \delta\mu_b^2) + \tilde{H}_2(\delta\mu_a - \delta\mu_b)^2 \end{split}$$

- mixed sea/valence mass terms
- unitary limit: $\delta \mu_q \rightarrow \delta m_q$

PQ results

• $(\beta, \kappa_0) = (5.50, 0.120900)$

• Linear behaviour for $M_\pi \lesssim \sqrt{3} imes 410 \, {
m MeV} \sim 700 \, {
m MeV}$

Introduction/Strategy	Lattice	PQ and tuning	Decay constants	Conclusions
κ_0 (fine) tuni	ng			

- If miss (slightly) starting point on SU(3) flavour symmetric line
- Tune using PQ results so that get physical values of (say)

$$M_{\pi}^*$$
 X_N^* M_K^*

correct

Gives

 $\kappa_0 \quad \delta\mu_I^* \quad \delta\mu_s^*$

• Philosophy: most change is due to change in valence quark mass, rather than sea quark mass $\delta \mu \equiv (2\delta \mu_l^* + \delta \mu_s^*)/3 \neq 0$ necessarily

• eg $(\beta, \kappa_0) = (5.50, 0.120950), \ \delta \overline{\mu} = 0.00007, \ \kappa_0^{val} = 0.120948$

Introduction/Strategy

Lattice

PQ and tuning

Decay constants

[Bhattacharya et al., hep-lat/0511014]

Conclusions

The axial current I

• The renormalised and O(a) improved axial current is given by

$${\cal A}^{{\it ab};{\scriptscriptstyle R}}_\mu=Z_{\!A}{\cal A}^{{\it ab};{\scriptscriptstyle M\!P}}_\mu$$

with

$$\mathcal{A}_{\mu}^{ab;\mathbb{MP}} = \left(1 + a\left[\overline{b}_{A}\overline{m} + \frac{1}{2}b_{A}(m_{a} + m_{b})\right]\right)\mathcal{A}_{\mu}^{ab} \qquad \mathcal{A}_{\mu}^{ab} = \mathcal{A}_{\mu}^{ab} + ac_{A}\partial_{\mu}P^{ab}$$

and

$$A^{ab}_{\mu} = \overline{q}_a \gamma_{\mu} \gamma_5 q_b , \qquad P^{ab} = \overline{q}_a \gamma_5 q_b$$

Matrix elements

 $\langle 0|A_4^{ab}|M\rangle = Mf$ $\langle 0|\partial_4 P^{ab}|M\rangle = Mf^{(1)}$

giving

$$f^{R} = Z_{A}\left(1 + \mathrm{a}c_{A}\frac{f^{(1)}}{f}\right)\left(1 + \mathrm{a}\left((\overline{b}_{A} + b_{A})\overline{m} + \frac{1}{2}b_{A}(\delta m_{a} + \delta m_{b})\right)\right)f$$

Introduction/Strategy

PQ and tuning

Decay constants

Conclusions

The axial current II

• c_A small, $f^{(1)}/f$ constant

• For constant \overline{m} absorb some terms to give

$$\tilde{f}^{R} \equiv \frac{f^{R}}{X_{f}^{R}} = 1 + \left(\tilde{G} + \frac{1}{2}\mathrm{a}b_{A}\right)\left(\delta m_{a} + \delta m_{b}\right) + \dots$$

presently take $b_A = 1 + O(g_0^2)$, tree level

Unitary line

Converting

 $\frac{f_{\mathcal{K}}}{f_{\pi}} = 1.17(3)$

FLAG3/PDG 1.195(3)

SU(2) isospin breaking effects

- Provided \overline{m} kept constant, then expansion coefficients $\alpha(\overline{m}), \ldots$ remain unaltered whether
 - 1+1+1
 - 2+1

• Parameterise SU(2) isospin breaking effects by

$$\frac{f_{\mathcal{K}^+}}{f_{\pi^+}} = \frac{f_{\mathcal{K}}}{f_{\pi}} \left(1 + \frac{1}{2}\delta_{SU(2)}\right)$$

• Expanding about average light quark mass $\delta m_l = (\delta m_u + \delta_d)/2$ gives in LO (which appears to work quite well)

$$\begin{split} \delta_{SU(2)} &= \frac{2}{3} \left(1 - \left(\frac{f_K}{f_\pi} \right)^{-1} \right) \frac{\delta m_d - \delta m_u}{\delta m_u + \delta m_d} \\ &= \left(1 - \left(\frac{f_K}{f_\pi} \right)^{-1} \right) \frac{M_{K^0}^2 - M_{K^+}^2}{M_{\pi^+}^2 - \frac{1}{2} \left(M_{K^0}^2 + M_{K^+}^2 \right)} \end{split}$$

At the physical point this gives

$$\delta_{SU(2)} \approx -0.0042$$

Introduction/Strategy	Lattice	PQ and tuning	Decay constants	Conclusions

Conclusions

• Programme:

Tune strange and light quark masses to their physical values simultaneously by keeping

$$\overline{m} = rac{1}{3} \left(2m_l + m_s
ight) = ext{const.}$$

starting from a point on the SU(3) flavour symmetric line

- Expansion coefficients determined using both unitary and pq data
- *SU*(3) flavour symmetry breaking expansion works well even at leading order Gell-Mann–Okubo expansion
 - $X_S(\kappa_0)$ (singlet quantities) remain constant from SU(3) flavour symmetric line
 - path to physical point linear
- Have extended formalism from pseudoscalar meson masses to pseudoscalar decay constants