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GeVP in configuration space
What can one do in order to resolve better a dense spectrum of
states??

Well established technique to reliably extract energy-levels from
Euclidean Correlators in Lattice QCD.

of special importance for states living near a multi-particle
production threshold.
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Data from Mohler et. al, Phys. Rev. Lett. 111 222001 (2013)
“D∗s0 (2317) Meson and D-Meson-Kaon scattering from Lattice QCD”
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A short reminder ...

The central ideal consists in replacing the Euclidean correlation function
by a matrix of correlators

G (τ)→ Gij (τ) =
〈
Oi (τ)O†j (0)

〉
where {Oi (τ)}i=1,...,N is a set of operators with common quantum
numbers:

one can choose different gamma structures, covariant derivatives,
different smearings, multi particle operators, ... in order to construct
the basis. The only restriction is that they have to couple to the
same energy states.

”the more linearly independent they are chosen at the beginning, the
better the subspace will be spanned.”
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Where is the gain?

Using the spectral decomposition we can write

Gij (τ) =
N∑

n=1

Z
(n)
ij e−Enτ , Zij = Z

(n)
i Z

(n)∗
j , Z

(n)
i = 〈0|Oi (0)|n〉

Notice that G = G † by construction and has therefore N2 real d.o.f.

On the other hand, Z has 2N − 1 real d.o.f. because it is the direct
product of one complex vector and its h.c. (rank(Z ) = 1, this will be
important later on.)

Therefore, a counting of accessible d.o.f. tells us that

#d .o.f . [Gij (τ)] = N2NT , #d .o.f .

[ N∑
n=1

Z
(n)
ij e−Enτ

]
= (2N−1+1)N

as we increase the value of N we are constraining more the problem
than if we considered a single operator. It is common to set N = N .
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GeVP in coordinate space

Once the matrix Gij (τ) is constructed, one solves the Generalized
eigenvalue Problem

Gij (τ)v
(n)
j (τ, τ0) = λ(n)(τ, τ0)G (τ0)ijv

(n)
j (τ, τ0), n = 1, ...,N

with G (τ0) acting like a metric in this subspace. Assuming
non-degenerate eigenvalues, their form is shown to be

λ(n)(τ, τ0) = e−Enτ + O(e−(EN+1−En)τ ), if τ0 ≥
τ

2

Blossier et. al [0902.1265]

and the energy-levels are extracted in the usual way

Eeff ,n(τ + a/2) = log

(
λ(n)(τ)

λ(n)(τ + a)

)
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Spectral functions and their importance
Spectral functions contain all information for a given a channel.
Relevant at T 6= 0, they encode real-time properties of the medium
(diffusion of conserved charges, differential production rates, ...)

Formally, it is defined as

ρ(ω) =
1

2π

∫ ∞
−∞

dt e iωt Tr
{
ρ̂[O(t),O†(0)]

}
, ρ̂ =

1

Z
e−βĤ

and its relation to the euclidean correlator G (τ) is defined via an
integral equation. For the case of symmetric correlators one has,

G (τ) =

∫ ∞
0

dωρ(ω)K (ω, τ), K (ω, τ) =
cosh(ω(β/2− τ))

sinh(ωβ/2)

β→∞→ e−ωτ

The numerical inversion of the last equation is numerically an ill-posed
problem. Regularization needed!

Talk of Mr. Haitao SHU on 28/7 at 15:00, Stochastic approaches to extract spectral
functions from Euclidean correlators
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The Backus-Gilbert method: an (old) linear method

Recently used in: B. Brandt, A. Francis, H. Meyer, DR [1506.05732]
A. Francis, O. Kaczmarek, M. Laine, T. Neuhaus, H. Ohno [1508.04543]

B. Brandt, A. Francis, B. Jäger, H. Meyer [1512.07249]

G (τ) =

∫ ∞
0

dωρ(ω)K (ω, τ)

Define an estimator ρ̂(ω̄) which is a “filtered” version of the true spectral
function (it is just a linear combination of the input):

ρ̂(ω̄) =

∫ ∞
0

dωδ̂(ω̄, ω)ρ(ω) =

NT∑
α=1

qα(ω̄)G (τα) (linear method)

The coefficients qα(ω̄) also define the resolution function:

δ̂(ω̄, ω) =

NT∑
α=1

qα(ω̄)K (ω, τα)
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Variational method in frequency space

1 Construct from the matrix of euclidean correlators Gij (τ), the matrix
of spectral functions estimators ρ̂ij (ω̄) via the BG-method.

... we use the same common resolution function ∀i , j

(i , j label the operator basis. α, β label the time slices).

2 Solve the Generalized Eigenvalue Problem

ρ̂ij (ω̄)v
(n)
j (ω̄, τ0) = λ(n) Gij (τ0)︸ ︷︷ ︸

metric

v
(n)
j (ω̄, τ0)

G(τ0) serves to the purpose of having a reference value such that
overall normalization factor of operators are irrelevant.
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One example: the Υ- channel from NRQCD
From perturbative results we know that these type of spectral
functions go like ∼ ω1/2 for ω →∞. Burnier et. al [0711.1743].
We therefore use a reweighting function to write

G (τ) =

∫ ∞
0

(
ρ(ω)√
ω

)(
e−ωτ

√
ω
)︸ ︷︷ ︸

K(τ,ω)

ρ̂(ω̄) =

∫ ∞
0

dωδ̂(ω̄, ω)

(
ρ(ω)√
ω

)
Similar, to other methods that attempt to solve inverse-problems,
the Backus-Gilbert method has a regulator ξ which trades off
resolving power vs. error:

∆ρ̂(ω̄) =
√
qα(ω̄)Sαβqβ(ω̄), (error on ρ̂(ω̄))

Γ(ω̄) = qα(ω̄)

∫ ∞
0

dωK (τα, ω)(ω − ω̄)2K (τβ , ω)︸ ︷︷ ︸
Wαβ(ω̄)

qβ(ω̄) (width of δ̂(ω̄, ω))

Wαβ(ω̄)
reg.→ ξWαβ(ω̄) + (1− ξ)Sαβ , tuning of ξ necessary.
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Preliminary results: Υ from NRQCD
Three different operators were considered: a point source (p), a
gaussian smeared (x) and an “excited” (e) one.
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Eigenvalues from the GeVP
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Hierarchy between eigenvalues indicates a rank = 1 structure for the
Z matrix ...

...it is the case if the width of the resolution function is smaller than
the separation between states (enough resolving power).
...also when the basis of operators is not linearly independent enough
(say all operators couple very strongly to one and the same state)
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A perturbative inspired mock-data study
Consider the Euclidean Lagrangian density with Z2-symmetry:
φ 7→ −φ

L =
1

2
(∂K )2 +

1

2
m2

KK
2 +

1

2
(∂φ)2 +

1

2
m2
φφ

2 + Lint

Lint =
g

2
Kφ2 +

λ

4!
φ4 +

λk

4!
K 4 +

gK

3!
K 3 +

h

4
K 2φ2

(a similar model was already used in L. Lellouch, M. Lüscher [hep-lat/0003023]

in the context of finite volume K → ππ transitions)

and consider the operators:

O(1)(x0) =

∫
d3x e ipxK (x0, x), O(2)(y0) =

∫
d3y d3z e ik(y−z)φ(y0, y)φ(y0, z)

that create/annihilate a K -particle at time x0 with momentum p
and 2φ-particles at time y0 with back-to-back momentum k.
The goal is to calculate the matrix of euclidean correlators

Gij (x0 − y0) =
〈
O(i)(x0)O(j)†(y0)

〉
, i , j = 1, 2

to some useful order in the couplings and feed it through the
method to check our expectations.
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The idea is ...

〈
O(1)(x0, p)O(1)(y0, k)

〉
=

e−ω
(K)
p |x0−y0|

2ωp
L3δp,−k + ...〈

O(1)(x0, p)O(2)(y0, k)
〉
= g

L3δp,0
4ωK

p (ωπk )
2((ωK

p )2 − 4(ωπk )
2)

(
ωK
p e
−2ωπ

k |x0−y0|

− 2ωπk e
−ωK

p |x0−y0|
)
+ ...〈

O(2)(x0, p)O(2)(y0, k)
〉
=

L6

4(ωπp )2
e−2ωπ

p |x0−y0|(δp,−k + δp,k)

+ g 2 L3

4ωπp ωπk

(
2e−mK |x0−y0|

mK (4(ωπk )
2 −m2

K )(4(ω
π
p )2 −m2

K )

+
e−2ωπ

k |x0−y0|

4ωk((ωπk )
2 − (ωπp )2)(4(ωπk )

2 −m2
K )

+
e−2ωπ

p |x0−y0|

4ωp((ωπp )2 − (ωπk )
2)(4(ωπp )2 −m2

K )

)
+ (t, u-channels)

+ λ
L3

4ωπp ωπk

(
e−2ωπ

p |x0−y0|

4ωπp ((ωπk )
2 − (ωπp )2)

− e−2ωπ
k |x0−y0|

4ωπk ((ω
π
k )

2 − (ωπp )2)

)
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Conclusions

Backus-Gilbert method proves to be useful compared to other
reconstruction methods.

GeVP analysis helps in the identification of states → hierarchy in the
eigenvalues (rank = 1).

Possibility of defining optimal operators that strongly overlap to
local regions in frequency.

O(opt)(ω̄, x) = v
(n)
i (ω̄)Oi (x)

Can we use this method to identify and resolve resonances?

Perturbative calculations may help checking our expectations.
(tree-level results completed).

Currently constructing a QCD dataset both at finite temperature as
well as zero temperature with ∼ 6 operators.
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