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phenomenological motivations

FLAG, arXiv:1607.00299
PDG review, j.rosner, s.stone, r.van de water, 2016
Foe2016 Tt f>< v.cirigliano et al., Rev.Mod.Phys. 84 (2012)
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® from the last FLAG review we have ® QED corrections are currently estimated in x-pt
fod =1302(L4HMeV, 6§=11%, Soeplln~ — (0] = 1.8% ,
f}(j: = 155.6(0.4) MeV , 5§ =0.3%, SoeplK~ — 0] =1.1% ,

f1(0) = 0.9704(24)(22) , & =0.3% SqrpT[K — o] = [0.5,3]%



the infrared problem

® |et's consider the extraction of a matrix-element from an euclidean correlator

C(t, p) = (0]A(t) P(0,p)|0) , t>0

® we know very well what we have to do when there is a mass-gap

C(t,0) = (0|A|P(0)) wiiﬂ e VP 4 R(t) ,

R(t) = Ry e tF1 4 ...
® in presence of electromagnetic interactions, the states

H|Pyy -+ vn) =

(Vg + Goa b 4 a4 e 1P )

are degenerate with | P(0)) in the limit k; — O

@—



infrared-safe measurable observables

the infrared problem has been analyzed by many
authors over the years

electrically-charged asymptotic states are not
eigenstates of the photon-number operator

the perturbative expansion of decay-rates and
cross-sections with respect to a is cumbersome
because of the degeneracies

the block & nordsieck approach consists in lifting
the degeneracies by introducing an infrared
regulator, say m.~, and in computing infrared-safe
observables

at any fixed order in «, infrared-safe observables
are obtained by adding the appropriate number of
photons in the final states and by integrating over
their energy in a finite range, say [0, AE]

in this framework, infrared divergences appear at
intermediate stages of the calculations and cancel
in the sum of the so-called virtual and real
contributions

f.bloch, a.nordsieck, Phys.Rev. 52 (1937)
t.d.lee, m.nauenberg, Phys.Rev. 133 (1964)
p.p-kulish, I.d.faddeev, Theor.Math.Phys. 4 (1970)
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the RM1234+SOTON strategy

RM123, Phys.Rev. D87 (2013)
RM123+SOTON, Phys.Rev. D91 (2015)

® we have proposed to compute the leptonic decay-rate of a pseudoscalar meson at O(«); in this case the infrared-safe
observable is obtained by considering the real contributions with a single photon in the final state

D(AE) =T 4 ¢? lim {ATg(L) + ATy (L, AE)}
L— oo

® given a formulation of QED on the finite volume, L acts as an infrared regulator in the previous formula

® the finite-volume calculation of the real contribution is challenging: momenta are quantized and one would need very
large volumes in order to perform the three-body phase space integral in the soft-photon region with an acceptable
resolution; for this reason we have rewritten the previous formula as

[(AE) = T8 4 ¢2 Jim {AFO(L) — ATP*(L) + ATRY(L) + AT (L, AE)}

° Ath(L) is the virtual decay rate calculated in the effective theory in which the meson is treated as a point-like
particle; the so-called structure dependent contributions are given by

AT§P (L) = ATo(L) — ATRY(L)



the RM1234+SOTON strategy

RM123+SOTON, Phys.Rev. D91 (2015)
h.georgi, Ann.Rev.Nucl.Part.Sci. 43 (1993)

® the lagrangian of the point-like effective theory is
Lyt = ¢h(@) (=D} + mp} op (@) + {20GrVorm fpDuh (@) Uz)y" v(@) + he}
Dy =0y —ieAu(x)

® the matching with the full theory is obtained by using I'{j*

G \Verm|? 3 2 my
Fgee,pt _ Ftoree _F P mﬁi)r? (1 _ T‘?) ,

rg = ——
87 mp

® properly matched effective theories have the same infrared behaviour of the full theory: Al‘gt (L) has exactly the same
infrared divergence of A'g(L) and we can write

AE
__ ptree 2 . SD 2 . pt pt
PAB) =T(* +¢® lim ANGP(L) + ¢ lim {AFO (my) + AP (., AE)} +0 (r)cﬂ))

® we have shown that the neglected terms are phenomenologically irrelevant for P = {m, K} and AE ~ 20 MeV



the RM1234+SOTON strategy

RM123+SOTON, Phys.Rev. D91 (2015)

® in our original proposal we have not performed an analysis of the finite volume corrections affecting AT'g(L): we are

now going to fill the gap!

® the L +— oo asymptotic expansion of the decay rate can be written as

2 9 cy 1
ATo(L) — ATg(00) = erp log (L2m}) + ——+0(3
P

1
ATZH(L) — ATE (00) = erp log (L2m%) + —2— o(—)
(1) = AT (00) = erp tox (1Pmi) + 7 40 (15

in the following, we shall show that the coefficients c; p and ¢y are universal, i.e. they are the same in the full theory
and in the point-like approximation

® therefore, the finite volume effects on the non-perturbative structure-dependent contributions are

1

ATSP (L) — ATSP (00) = O (§>

® than we shall give an explicit analytical expression for Ath(L)



universality of IR logs and 1/L terms
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00 - 2p- 7\+k

to see how this works, let's consider the contribution to the decay rate coming from the diagrams shown in the figure

/' dkO —— 1 Laup(k)
27 ’ k2 2py - k4 k2

ATpg(L) — Al pg(o0) = L3 > -

520 (27r)3

infrared divergences and power-law finite volume effects come from the singularity at k2 = 0 of the integrand and from
the QED, prescription k # O

the tensor L, is a regular function, it contains the numerator of the lepton propagator and the appropriate
normalization factors

Lap(k) = Lap(k,pu,pe) = O0(1)



universality of IR logs and 1/L terms

® the hadronic tensor is a QCD quantity that, by neglecting exponentially
suppressed finite volume effects, is given by

H (k,p) = i [ o™ T I 0) 3 @) | PO))

HOM (ko p) = fp {W etk (2p+k>“}
pt ’ -

2p -k + k2

® the point like effective theory is built in such a way to satisfy the same WIs of the full theory

ky H*"(k,p) = —fpp®,  Hgph(k,p)=H™ (k,p) — Hplf'(k,p) .  ku HGH(k,p) =0

® the structure dependent contributions are regular and, since there is no constant two-index tensor orthogonal to k,

Hg(k,p) = (p- k8™ —k“p!) Fa + " ppko Fy + -+ = O(k)



universality of IR logs and 1/L terms

® the hadronic tensor is a QCD quantity that, by neglecting exponentially
suppressed finite volume effects, is given by

H (k,p) = i [ o™ T I 0) 3 @) | PO))

HOF (b, p) = fp {5(1“ R (2p+k)"}
pt ’ -

2p -k + k2

® the point like effective theory is built in such a way to satisfy the same WIs of the full theory
ky H*"(k,p) = —fpp®,  Hgph(k,p)=H™ (k,p) — Hplf'(k,p) .  ku HGH(k,p) =0
® the structure dependent contributions are regular and, since there is no constant two-index tensor orthogonal to k,
HEW (k,p) = (p- k6™ — K¥p*) Fa + ¢ ppkg Fy + -+ = O(k)

® structure-dependent terms can be also understood in the effective field theory language by adding all the operators
compatible with the symmetries of the full-theory, e.g.

Oy (z) = Fy P D¢ p () Fyp(x) U(@)vov(x)



universality of IR logs and 1/L terms

Lop(k) =0(1),  H(kp) = O(k) A%)< x >(:)—

® from the regularity of £, and from the previous relation we get

1 d3k dk® Lo (k) HEM (K,
ArgP ()~ arfPo = § L 3o - [ L84 [9E Lo HHE 0

L B0 (2m) 27 k2 (2py - k + k2)

1 > / d3k dk®  O(k)

L3 k20 (2m)3 27 k2 (2py - k)

o 1
~o\L?
® the other contributions, represented in the figure, can be analyzed by using similar arguments and we get our result

ATSP (L) = APSP (00) + O (%)



universality of IR logs and 1/L terms

1 - d3k
{F > 7/ (2m)3

k#0

~dk® 1 1
/ 27‘—1‘:770(L4*") x

® from the regularity of £, and from the previous relation we get

1 d3k dk® Lo (k) HEM (K,
ArgP () —arfPoe = § L 3o - [ S5 [ 9 Lol HHE0)

L B0 (2m) 27 k2 (2py - k + k2)

1 - A3k dk®  O(k)

L3 B0 (2m)3 27 k2 (2py - k)

o 1
= 13
® the other contributions, represented in the figure, can be analyzed by using similar arguments and we get our result

ArSP (L) = APSP (00) + O (%)



sums approaching integrals

m.hayakawa, s.uno, Prog.Theor.Phys. 120 (2008)
BMW, Science 347 (2015)
b.lucini et al., JHEP 1602 (2016)

® in order to get an analytical expression for Ath(L) we have evaluated infrared divergent sums as the following

8p - pg dk° 1
Cpe(L) = ——5— /

s =) 2 k2 [2p b+ k2] [2p0 Kk + K2

® that we managed to rewrite as

(14 r7)log(r})

1672(1 — 12) {2108 (£2m3) +102(rD)} + co(Be)

Cpe(L) = -

1 (1+3r2) (34612 —r5)

(mpL)3 4(1+r%)3

® the l/L3 term is peculiar of QED [, and would be absent in a local formulation of the theory such as QED
® in the previous expression we have used the kinematics of the process, i.e. p = py + p,, from which it follows

mp 2 ., mp 2 Py me
Ez:T(lJrTg)» Pe:mT(lfw)y Be=—, T = ——



sums approaching integrals

® we have introduced generalized ¢-functions that depend upon an external spatial momentum (SZ/ = 2773 — {0})

1
Cc(Be) = — log

.<1+Be> log(us) + g 4ud/?

28, 1- 5, 4n2 N
+i Z F(%,uth) euj<k'3#‘)2f£%7u*(k‘ﬂk)2}
VT o kI3 [1= (k- Be)2] k- Belevsk? T (3, uak?)

L 2By D< v By >
duy du 1 /ﬁ iy Vea—280u)  \ Ju(1—284v)
u 0 ; (1 —2B¢y)

1 .
=
472 ’,;U 0

where u, > 0 is an arbitrary parameter, (- (8By) does not depend upon u,, and

o a-1_—u = ® a-1_—u —22 (7 u?
', z) = duu e , INa,z) = duu e , D(z)=e due
x 0 0

® this is an horrible expression (we have other equivalent horrible expressions) but can be evaluated with remarkable
numerical accuracy ...



sums approaching integrals

mp (MeV)  my Be Be ¢B(Be) ¢c(Be)
m_ 4 m, 027138338825  (1,1,1)/v/3 -0.05791071589  -0.06331584128
my my, 091240064548  (1,1,1)/+/3 -0.10350847338  -0.09037019089
319.04 m,  0.80332680614  (1,1,1)/v/3 -0.08090777589  -0.07877650869
382.36 my, 0.85811529992 (1,1, 1)/\/§ -0.08960375038 -0.08359870731
439.50 m,  0.89072556952  (1,1,1)/+/3 -0.09706060796  -0.08737355417
273.50 my, 074027641641  (1,1,1)/v/3 -0.07428926453  -0.07477600535
256.19 my, 070926754699  (1,1,1)/+/3 -0.07184408338  -0.07321735266
209.65 m, 077883567253  (1,1,1)/v/3 -0.07801627478  -0.07706625341
433.26 my, 0.88773322628 (1,1, 1)/\/§ -0.09627652081 -0.08699199510
221.79 m,  0.63006264555  (1,1,1)/+/3 -0.06711881612  -0.07006731685
252.97 my 0.70292547354 (1,1, 1)/\/3 -0.07139283129 -0.07292458544
573.28 m, 093420632487  (1,1,1)/v/3 -0.11167875480  -0.09376593376
607.84 my, 094134202978  (1,1,1)/v/3 -0.11470049030  -0.09488055773

¢5(0) = —0.05644623986 ,

¢c(0) = —0.06215473226

® notice that the ¢-functions are functions of a single variable

2

Py . 1—r
Be=2L -5

‘T E, R

my
Ty = ——
mp



analytical result for Ath (L)

® our final result for ATP? (L), to be used in order to apply our strategy in numerical simulations, is

ATPH(L) — AT (L) c 1
0 0 2 2 1
—_———— =c log(L“m +co+ —+ O (*)
ries crr log( p)+co (mpL) 12

where

1 { (1+ 7[2) log(r?) n l}

IR = gn2 TE))
o= ! ; {ng ( mj; ) L @o6rdlos(r]) + <21 +rp)log?(r]) g} 4 Se(@) = 2%eBo).
167 my, 1 -y 2
1+
c1 = Mcmm + 1<n<m>

1-—

and we have shown only the universal terms

® notice that the lepton wave-function contribution to the decay _(ﬁ jt)_
. S X

rate, AFSZ(L), does not contribute to AT’ D(L)



conclusions & outlooks

our method to calculate O () QED radiative corrections to
hadronic decay rates is based on the block & nordsieck
approach and on the universality of infrared divergences

1.030 (—] 0 s-rs0ve 20 @ 5150 Ua- 32 (st com)
O =190, a-24 W 6 1.95, L/a - 24 (FSE cor)
the infrared divergent term in the non-perturbative virtual g [y
decay rate is cancelled by subtracting the same quantity O por9s,va-32
. s N 1.025 F | & p-210.0a-40 B
calculated in the point-like effective theory B physial pont
@ =190, L/a = 20 (FSE corr.)
W 5190, L/a - 24 (FSE om)

we have now computed analytically AI‘ZO”’(L) 1.020 -

and shown that, together with the infrared divergence, also the
leading 1/ L finite volume effects are universal and cancel in

the difference AT'g(L) — AFOPt(L)

1.015

(6 = 0 vid) 7 T (1 -5 )

1.010
therefore, finite volume effects on the non-perturbative 0.1
structure-dependent contributions start to contribute at

O(1/L?)

see next talk by s.simula

with the results presented in this talk, all the ingredients are
now in place for a non-perturbative calculation of the O(a)
leptonic decay rate of pseudoscalar mesons



backup material




the RM1234+SOTON strategy

RM123+SOTON, Phys.Rev. D91 (2015)

notice that AT'g (L) and Al"gt(L) are ultraviolet divergent

the divergence can be reabsorbed into a renormalization of G, both in the full theory and in the point-like effective
theory

we have analized the renormalization of the four-fermion weak operator on the lattice in details and calculated the
matching coefficients to the so-called W -regularization

1 1 1

_- -
2 2 2 2
k k k2 + mi,
indeed, this is the regularization conventionally used to extract G  from the muon decay
2 5 2
L:M I,SMC [1+i<§,ﬁ2)}
T 19273 m2 27 \ 4

this is the reason why one has an ultraviolet divergent log depending upon myy, in the analytical result for Al"gt (L)
shown above




sums approaching integrals

® in order to calculate C'py (L) it is convenient to introduce a second infrared regulator and to separate the
infrared-divergent infinite volume integral from the corresponding finite volume corrections

Cpe(L) = lim {Cpe(e) + ACp(L, e)}

d*k 1

(2m)4 [k2 +€2] [2p- k + k2 +&2] [2pp - k + k2 4 2]

-~ (1+7‘?)10g(7‘?) 2 _ 2
= 7167#(1 — r%) 2log p log(ry) ¢ »

Cpe(e) = —8p - pg

ACPpy(L,¢)

/ d3k / dk° 8EympL?
ot (2m)3 271 [k2 4 (Le)2] [2Lp - k + k2 + (Le)2] [2Lpg - k + k2 + (Le)?]
where we have made the change of variables k +— k/L and made explicit our choice of reference frame

p = (imp,0), pe = (iEg, py)



sums approaching integrals

® we now combine the three denominators by introducing two Feynman's parameters

8EympL?
[k2 4+ (Le)?] [2Lp - k + k2 + (Le)?] [2Lpg - k + k2 + (Le)?]
1 L 16E
:/ dy/ dxx eme 3
Y Y {(k+xpy)2+ac2m§+(Ls)2}

where we have defined
py =ype + (1 —y)p,
2 2 2 2 2 2
my =—py, =y mp +(1—-y) mp+2y(1l —y)EBymp > 0

® it is important to notice that mi > 0 and it is also useful to introduce the following quantities

2 2 2 2 Y
ey =my ty'pp >0, qQy = —Dp¢
m
Y



sums approaching integrals

® the ko-integral appearing in the AC'py(L, €) formula can now be traded for a Schwinger’s parameter integral

- dk0 = 2,.2,.2 2
/ﬂ 1 L= 1 / duud/? e—u{(k+mpy) +z?m3 +(Le) }
2 {(k+:cpy)2 +:v2m§ +52} v/

® an extremely useful trick to evaluate this kind of sums consists in splitting the Schwinger’s parameter integral at an
arbitrary scale u, > 0

oo U g =)
/ du = / du +/ du
0 0 wy
the contribution to the sum corresponding to u € [u4, 0o] is then calculated in momentum space

d3k
(2m)3

~ )
/ duf(u k) — ot 40
keQ/ Uk

while the other contribution is calculated in coordinate space by using Poisson’'s summation formula

,/ (27r)3 /:* du f(u, k)

keqQ/

wx Uk a*k ikem — 0
= — d R d = sk c C
/0 u f(u OHEQO/O uf (a3 TR . n



sums approaching integrals

® by applying this trick we have
ACpy(L,e)=C®+ ¢ +ct + 0™,

4E u 2 1 d Lm 2,2
ZEemp * du u3/257u<l‘6) / il / v dexe °F [qy+1} )
0 0

c = .
f 0 my
. . . 3
&0 = _2Bgmp [ du u3/2€7u(LE)2 _/1 o /L"‘y deze™ " a7k e*u(’c+qu)2
v Ju, o m2 Jo (2m)3

ot - 4Eemp > / /2 u(L)? /1 dy /Lmy szu[(wzqy) +a?] ’
0

keQ/

n2
1 dy [Lmy u{T +mnt)3} H
/ drxe
0

E;m U 2
o- - Ee 2P Z/ * due—v(Le) / 2
27 "0 0 mg

® notice that, except for C9, the xz-integral can be extended up to co at the price of neglecting exponentially suppressed

finite volume effects (remember that m, > 0)

® moreover, except for C9, one can set e = 0 in the remaining integrals by neglecting regular terms



sums approaching integrals

® indeed, the infrared divergence is contained in co

_ (A4 1)) log(ry) log(L?e?) + log(ux) + &

0
c’ =
2(1 —72) 472

® also the evaluation of the integrals entering in the expression of cOis straightforward,

o _ 44372 1 (14323 +6r2 —rd)
3w (mpL)3 41+ r2)3

notice the 1/L3 terms generated by the QED, prescription



sums approaching integrals

® the remaining contributions can be evaluated by starting from the following formulae

5 2YVu(k-pg)
cy

c+:4E[mP Z /

ﬁ kcQ! VU

oo 2 oo 2 1 d -
du \/ﬂeiuk’ / dexe ” / —ye
0 0

e
€y

pim 2
s 14 oo _u{maw}_L

du/ td / drxe w du
0 0

Egmp
co==mry | =l
272 Z mg

n#0 Y

that can be eventually be reexpressed in terms of Jacobi's 0-functions

e 2
03 (a,b) =1+2 Z cos(2na) b™

n=1



sums approaching integrals

® or, after some algebra, in terms of incomplete I'-functions and the Dawson-function

e (T B2 = [
ot 2 > F(%,u*kz) 1+eu*(k62) r[g,u*(kﬁeﬂ
VT o kI3 {1—(’%',35)2} |’;'Bz|€“*k2r(%ﬂu*k2)
L 2By D< v(RBy) >
4u g 1
1 du _ 1 Tra w(1—28py) u(1—28py)
ol [y [, f f
4m nz070 u 0 (1 —2Bpy)

® by putting all the contributions together one gets the expression of Cpy (L) given in the main part of the talk



