Using a new analysis method to extract excited states in the scalar meson sector Lattice Conference 2016 - Southampton

A. Abdel-Rehim, C. Alexandrou, J. Berlin, M. Brida, <u>J. Finkenrath</u>, T. Leontiou, M. Wagner

25.07.2016

Content

- * Motivation
 - Scalar channel $q\overline{q}$

* AMIAS (Athens Model Independent Analysis Scheme)

- Idea
- Application
- * AMIAS in practice
 - Search for a_0 excluding loops
 - Search for a_0 including loops

TARGET: extract mass states from correlation matrix

- \rightarrow for large time distances lowest state can be extracted, but \ldots
 - how to extract if signal is only good for few time slices ?
 - how to extract if signal is dominated by more than one states ?

We are using: ensemble generated with 2+1 dynamical clover fermions and Iwasaki gauge action by the PACS-CS Collaboration [Aoki et.al. 2008] Lattice 64×32^3 with $a \sim 0.09$ fm and ~ 500 configurations at $M_\pi \sim 300$ MeV

We are using a_0 interpolators with $J^P = 0^+$ [Joshua Berlin's Talk] interpolators quark content: $\overline{du} + \overline{ss}$

 \rightarrow 6x6 correlation matrix with $q\overline{q}, diQ\overline{diQ}, \pi\eta_s, 2K$

 \rightarrow we will start with the $q\overline{q}$ correlator

Motivation $q\overline{q}$

The Scalar channel: $q\overline{q}$ Operator with $J^P = 0^+$: $\mathcal{O}(x) = \overline{d}(x)u(x)$ Correlator $C(t) = \langle \mathcal{O}(t)\mathcal{O}^{\dagger}(0) \rangle$ on a periodic lattice:

Standard technique to extract effective masses using asymptotic behavior:

$$C(t/a) = \sum_{i} A_i \operatorname{cosh}(E_i(t-T/2)) \underset{t \gg 1, T \gg 1}{\longrightarrow} A_0 \operatorname{cosh}(E_0(t-T/2)) + \dots$$

 \rightarrow here dominated by two states

Motivation $q\overline{q}$

The Scalar channel: $q\overline{q}$

Operator with $J^P = \hat{0^+}: \mathcal{O}(x) = \overline{d}(x)u(x)$

Effective mass on a periodic lattice:

Standard technique to extract effective masses using asymptotic behavior:

$$\frac{C(t/a)}{C(t/a-1)} = \frac{\cosh(E_{eff}(t-T/2))}{\cosh(E_{eff}(t+1-T/2))}$$

Ŗ

 \rightarrow dominated by two states

Introduction $q\overline{q}$ Results

The Scalar channel: $q\overline{q}$

here: lowest energy easy to identify (high statistics) however: we are not interesting in lowest state (unphysical) \longrightarrow lattice artefact, backwards traveling pion

- higher state do not have a plateau
- can'nt be extracted by a simple plateau average
- \rightarrow what is with the correlator ?

The Scalar channel: $q\overline{q}$

<u>here</u>: we simply fit the logarithm behavior for $t \in [2; 4]$ and $t \in [8; 12]$

Another possiblity: fitting the correlator

$$f(t) = \sum_{n=0}^{N} A_n \cosh(E_n(t - T/2))$$

This is a non-linear minimization

AMIAS

- Standard least-squares algorithms: are numerically unstable,
 - depend on the initial condition and fail for very low signal-to-noise ratio
- \Rightarrow to circumvent this we will use AMIAS

AMIAS (Athens Model Independent Analysis Scheme)

- relies on statistical concepts
- sample probability distributions of parameters
- also insensitive parameters are fully accounted and do not bias the results
- can access a large number of parameters by using Monte Carlo techniques

[Alexandrou et.al. arXiv:1411.6765], [C. Papanicolas and E. Stiliaris, arXiv:1205.6505], [E. Stiliaris and C. Papanicolas, AIP Conf. Proc. 904, 257 (2007)]

Idea Applicatio

AMIAS: Basic Idea

- Using the χ^2 of the fit function $f(t) = \sum_{n=0}^N A_i \cosh(E_n(t-T/2))$

$$\chi^2 = \sum_{k=1}^{N_t} \frac{(C(t_k) - \sum_{n=0}^{\infty} A_n \cosh\{E_n(t_k - T/2)\})^2}{(\sigma_{t_k}^2/N)}$$

- Using the central limit theorem \Rightarrow each value assigned to the model parameters has a statistical weight proportional to

$$P(C(t_n); n) = e^{-\frac{\chi^2}{2}}$$

Model parameters

The probability for parameter A_i , (E_i) to have a specific value a_i is given by

$$\Pi(A_i = a_i) = \frac{\int_{b_i}^{c_i} dA_i \int_{-\infty}^{\infty} \prod_{j \neq i} dA_j, A_i e^{-\tilde{\chi}^2/2}}{\int_{-\infty}^{\infty} \left(\prod_j dA_j\right) A_i e^{-\tilde{\chi}^2/2}}.$$

 \Rightarrow Multi-dimensional integrals \rightarrow Monte Carlo sampling with $P(C(t_n); n)$

ldea Application

Scalar channel: $q\overline{q}$

Results from AMIAS:

- \Rightarrow distribution of two energies and their corresponding apmlitudes
 - clean distinction
 - need to set intervalls for identifying them we use multiple tempering to explore the whole parameter region

ldea Application

Scalar channel: $q\overline{q}$ Results from AMIAS:

lattice artefact:

the π is propagating backwarts in time generate a lattice artefact state with

 $\rightarrow aE_{art} = a(m_{\eta_s} - m_{\pi}) \sim 0.2$ state around the a_0 -region ~ 0.6 :

in this region is the is $\pi+\eta_s$ and the 2 kaon channel

 \longrightarrow we need to couple the meson-meson interpolators to $q\overline{q}$

Without loops With loops

Using in search for a_0 particle

AMIAS: can be also adapted for correlation matrices ("Search for a_0 interpolators $J^P=0^{+*}$)

$$\begin{aligned} (j = 0) &: \mathcal{O}^{q\bar{q}} &= \sum_{\mathbf{x}} \left(\overline{d}_{x} \boldsymbol{u}_{x} \right) \\ (j = 1) &: \mathcal{O}_{point}^{K\bar{K}} &= \sum_{\mathbf{x}} \left(\overline{s}_{x} \gamma_{5} \boldsymbol{u}_{x} \right) \left(\overline{d}_{x} \gamma_{5} \boldsymbol{s}_{x} \right) \\ (j = 2) &: \mathcal{O}_{point}^{\eta_{s} \pi} &= \sum_{\mathbf{x}} \left(\overline{s}_{x} \gamma_{5} \boldsymbol{s}_{x} \right) \left(\overline{d}_{x} \gamma_{5} \boldsymbol{u}_{x} \right) \\ (j = 3) &: \mathcal{O}^{diQdi\bar{Q}} &= \sum_{\mathbf{x}} \epsilon_{abc} \left(\overline{s}_{x,b} C \gamma_{5} \overline{d}_{x,c}^{T} \right) \epsilon_{ade} \left(\boldsymbol{u}_{x,d}^{T} C \gamma_{5} \boldsymbol{s}_{x,e} \right) \\ (j = 4) &: \mathcal{O}_{2-part}^{K\bar{K}} &= \sum_{\mathbf{x},\mathbf{y}} \left(\overline{s}_{x} \gamma_{5} \boldsymbol{s}_{x} \right) \left(\overline{d}_{y} \gamma_{5} \boldsymbol{s}_{y} \right) \\ (j = 5) &: \mathcal{O}_{2-part}^{\eta_{s} \pi} &= \sum_{\mathbf{x},\mathbf{y}} \left(\overline{s}_{x} \gamma_{5} \boldsymbol{s}_{x} \right) \left(\overline{d}_{y} \gamma_{5} \boldsymbol{u}_{y} \right) \end{aligned}$$

 $\begin{array}{l} \Rightarrow 6\times 6 \text{ correlation matrix:} \\ C_{jk}(t) = \langle \mathcal{O}_j(t) \mathcal{O}_k^{\dagger}(0) \rangle \underset{t \ll T}{\sim} \sum_{n=0}^{\infty} \langle 0 | \mathcal{O}_j(t) | n \rangle \langle n | \mathcal{O}_k^{\dagger}(0) | 0 \rangle e^{-E_n t}. \end{array}$

To analyze Correlation matrix: Generalized Eigenvalue Problem (GEVP) and AMIAS cross check with GEVP by solving:

$$[C(t)] v_n(t,t_0) = \lambda_n(t,t_0) [C(t_0)] v_n(t,t_0),$$

on the otherside: using Amias by fitting every matrix element with:

$$C_{jk}(t) = \sum_{n=0}^{\infty} A_j^{(n)} A_k^{*(n)} \cosh\{-E_n(t-T/2)\}.$$

Without loops

Measurements: GEVP 5x5 without loops

- Lowest states coincidence with $\eta_s\pi$ and 2–kaon
- Diquark-antidiquark interpolating field (j = 4) mixed with excited states
- No a_0 candidate \longrightarrow expected to be around the $\eta_s\pi$ and the 2–kaon states

Without loops With loops

Measurements: AMIAS 4x4 without loops

Using AMIAS for correlation matrix with 2–meson interpolators (2 \times (π + η_s) and 2 \times 2K)

- Energies correspondes to expectations from single channels

- No a_0 candidate \longrightarrow expected to be around the $\eta_s\pi$ and the 2-kaon states
- Clear signal for energies and corresponding amplitudes

Measurements: AMIAS 4x4 without loops

Overlap of states with different interpolating fields ?

- \rightarrow using energies and corresponding amplitude to reconstruct correlation matrix
- \rightarrow extract overlap from eigenvectors of the orthogonalized GEVP

- \rightarrow agree with results of pure GEVP
- \rightarrow needs to identify the amplitudes
- \rightarrow can be difficult due to overlapping amplitudes/energies

AMIAS W Results

Without loops

Measurements: AMIAS 6x6 with loops PRELIMINARY

4 lowest states can be resolved (higher states can not be identify)

- strange quark loops introduces large noise (higher states very difficult to resolve)
- indication for an additonal state in the a_0 region
 - \rightarrow measurements are ongoing (this are PRELIMINARY results)

Conclusions

AMIAS:

- sampling of fit parameters by using χ^2
- can be used for single channels and correlation matrices

avoid plateau fits

can extrace states from channels which are dominated by more than one state ightarrow like it is done in case of $q\overline{q}$

AMIAS in the search for a0:

without loops: resolve four lowest state with loops : a_0 cannidate

Ongoing:

- increasing statistics
- investigate AMIAS: for example:
 - excluding noisy matrix elements
 - identification of amplitudes and energies

Without loops With loops

Thanks

18 / 18