Physical Spectra and the Limits of Perturbative Estimates in a Theory with a Higgs

Axel Maas

28th of July 2016 Southampton England

Consider the Higgs sector of the standard model

- Consider the Higgs sector of the standard model
- The Higgs sector is a gauge theory

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$

• Ws W^a_{μ} W

• Coupling g and some numbers f^{abc}

- Consider the Higgs sector of the standard model
- The Higgs sector is a gauge theory

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu}h^{j})^{+} D^{\mu}_{ik}h_{k}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + gf^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - igW^{a}_{\mu}t^{ij}_{a}$$

- Ws W^a_{μ} W
- Higgs h_i (h)
- Coupling g and some numbers f^{abc} and t_a^{ij}

- Consider the Higgs sector of the standard model
- The Higgs sector is a gauge theory

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j})^{+} D^{\mu}_{ik} h_{k} + \gamma (h^{a} h_{a}^{+} - v^{2})^{2}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$

- Ws W^a_{μ} W
- Higgs h_i (h)
- No QED: Ws and Zs are degenerate
- Couplings g, v, γ and some numbers f^{abc} and t_a^{ij}

- Consider the Higgs sector of the standard model
- The Higgs sector is a gauge theory

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j})^{+} D^{\mu}_{ik} h_{k} + \gamma (h^{a} h_{a}^{+} - v^{2})^{2}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$

- Consider the Higgs sector of the standard model
- The Higgs sector is a gauge theory

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j})^{+} D^{\mu}_{ik} h_{k} + \gamma (h^{a} h^{+}_{a} - v^{2})^{2}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$

• Local SU(2) gauge symmetry $W^{a}_{\mu} \rightarrow W^{a}_{\mu} + (\delta^{a}_{b}\partial_{\mu} - gf^{a}_{bc}W^{c}_{\mu})\phi^{b}$ $h_{i} \rightarrow h_{i} + gt^{ij}_{a}\phi^{a}h_{j}$

- Consider the Higgs sector of the standard model
- The Higgs sector is a gauge theory

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j})^{+} D^{\mu}_{ik} h_{k} + \gamma (h^{a} h_{a}^{+} - v^{2})^{2}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$

- Local SU(2) gauge symmetry $W^{a}_{\mu} \rightarrow W^{a}_{\mu} + (\delta^{a}_{b}\partial_{\mu} - gf^{a}_{bc}W^{c}_{\mu})\Phi^{b}$ $h_{i} \rightarrow h_{i} + gt^{ij}_{a}\Phi^{a}h_{j}$
- Global SU(2) Higgs custodial (flavor) symmetry
 - Acts as right-transformation on the Higgs field only $W^a_\mu \rightarrow W^a_\mu \rightarrow W^a_\mu$ $h_i \rightarrow h_i + a^{ij} h_j + b^{ij} h_j^*$

- Physical spectrum: Observable particles
 - Experiments measure peaks in cross-sections

- Physical spectrum: Observable particles
 - Experiments measure peaks in cross-sections
- Elementary fields depend on the gauge
 - Cannot be observable

- Physical spectrum: Observable particles
 - Experiments measure peaks in cross-sections
- Elementary fields depend on the gauge
 - Cannot be observable
- Gauge-invariant states are composite
 - Not asymptotic states in perturbation theory
 - Higgs-Higgs, W-W, Higgs-Higgs-W etc.

- Physical spectrum: Observable particles
 - Experiments measure peaks in cross-sections
- Elementary fields depend on the gauge
 - Cannot be observable
- Gauge-invariant states are composite
 - Not asymptotic states in perturbation theory
 - Higgs-Higgs, W-W, Higgs-Higgs-W etc.

- Physical spectrum: Observable particles
 - Experiments measure peaks in cross-sections
- Elementary fields depend on the gauge
 - Cannot be observable
- Gauge-invariant states are composite
 - Not asymptotic states in perturbation theory
 - Higgs-Higgs, W-W, Higgs-Higgs-W etc.

- Mass spectrum?
- Why does perturbation theory work?

[Fröhlich et al. PLB 80 Maas MPLA 12, Maas & Mufti JHEP 14]

• Lattice result: Lightest 0⁺ composite state has the same mass as Higgs at tree-level [Maas MPLA 12, Maas & Mufti JHEP 14]

[Fröhlich et al. PLB 80 Maas MPLA 12, Maas & Mufti JHEP 14]

- Lattice result: Lightest 0⁺ composite state has the same mass as Higgs at tree-level [Maas MPLA 12, Maas & Mufti JHEP 14]
- Coincidence?

- Lattice result: Lightest 0⁺ composite state has the same mass as Higgs at tree-level [Maas MPLA 12, Maas & Mufti JHEP 14]
- Coincidence? No.[Fröhlich et al. PLB 80]

 $\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx const. + \langle h^+(x)h(y) \rangle + O(\eta^3)$

- Same poles to leading order
- Fröhlich-Morchio-Strocchi (FMS) mechanism

- Lattice result: Lightest 0⁺ composite state has the same mass as Higgs at tree-level [Maas MPLA 12, Maas & Mufti JHEP 14]
- Coincidence? No.[Fröhlich et al. PLB 80]

 $\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx const. + \langle h^+(x)h(y) \rangle + O(\eta^3)$

- Same poles to leading order
- Fröhlich-Morchio-Strocchi (FMS) mechanism
- Perturbative tool to calculate bound state masses

- Lattice result: Lightest 0⁺ composite state has the same mass as Higgs at tree-level [Maas MPLA 12, Maas & Mufti JHEP 14]
- Coincidence? No.[Fröhlich et al. PLB 80]

 $\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx const. + \langle h^+(x)h(y) \rangle + O(\eta^3)$

- Same poles to leading order
- Fröhlich-Morchio-Strocchi (FMS) mechanism
- Perturbative tool to calculate bound state masses
- Deeply-bound relativistic state
 - Mass defect~constituent mass
 - Cannot be described with quantum mechanics

[Fröhlich et al. PLB 80 Maas MPLA 12, Maas & Mufti JHEP 14]

• W is a 1⁻ (degenerate) gauge triplet

[Fröhlich et al. PLB 80 Maas MPLA 12, Maas & Mufti JHEP 14]

- W is a 1⁻ (degenerate) gauge triplet
- No physical gauge triplets

- W is a 1⁻ (degenerate) gauge triplet
- No physical gauge triplets but custodial triplets!

- W is a 1⁻ (degenerate) gauge triplet
- No physical gauge triplets but custodial triplets!
- Same mechanism [Fröhlich et al. PLB 80]

$$\langle (h^{+} D_{\mu} h)(x)(h^{+} D_{\mu} h)(y) \rangle$$

$$h = v + \eta$$

$$\approx const. + \langle W_{\mu}(x) W_{\mu}(y) \rangle + O(\eta^{3})$$

$$\partial v = 0$$

• Same poles at leading order

- W is a 1⁻ (degenerate) gauge triplet
- No physical gauge triplets but custodial triplets!
- Same mechanism [Fröhlich et al. PLB 80]

$$\langle (h^{+} D_{\mu} h)(x)(h^{+} D_{\mu} h)(y) \rangle$$

$$h = v + \eta$$

$$\approx const. + \langle W_{\mu}(x)W_{\mu}(y) \rangle + O(\eta^{3})$$

$$\partial v = 0$$

- Same poles at leading order
- Also confirmed in lattice calculations

Limits?

[Maas MPLA 15]

Limits?

Structural

- Degeneracy patterns: Local vs. global symmetries
- Works for 1HDM and 2HDM models [Maas & Pedro PRD 16]
- May not hold for other theories [Maas MPLA 15, Maas & Törek'15]
 - Talk by Pascal Törek directly afterwards
- Implications for Technicolor-type theories [Maas MPLA 15]

Limits?

Structural

- Degeneracy patterns: Local vs. global symmetries
- Works for 1HDM and 2HDM models [Maas & Pedro PRD 16]
- May not hold for other theories [Maas MPLA 15, Maas & Törek 15]
 Talk by Pascal Törek directly afterwards
- Implications for Technicolor-type theories [Maas MPLA 15]
- Dynamical [Maas & Mufti PRD 15]
 - When is this identification possible?
 - When is perturbation theory predictive?

FMS prediction

FMS prediction

FMS prediction

Elastic decay threshold Higgs as resonance Expensive, signal very bad

FMS prediction

Elastic decay threshold Higgs as resonance Expensive, signal very bad

Higgs and W mass agrees FMS stops working So does Brout-Englert-Higgs!

Higgs mass

No strong dependence of mass range on cutoff - expected

[Maas & Mufti PRD 15]

Phase diagram

[Maas & Mufti PRD 15]

Phase diagram

- Quantum effects remove BEH effect
 - Opposite does not happen

- Quantum effects remove BEH effect
 - Opposite does not happen
- Interacting continuum limit? [Gies & Zambelli PRD 15]
 - LCP: 0⁺, 1⁻ masses, $\alpha(200\,GeV)$ (miniMOM scheme)

- Quantum effects remove BEH effect
 - Opposite does not happen
- Interacting continuum limit? [Gies & Zambelli PRD 15]
 - LCP: 0⁺, 1⁻ masses, $\alpha(200\,GeV)$ (miniMOM scheme)

Perturbative predictivity: Mass ratios

Perturbative predictivity: Mass ratios

Perturbative predictivity: Mass ratios

- FMS mechanism and perturbation theory predicts spectrum of observable states well in the SM
- Predictions: Structure and dynamics important

- FMS mechanism and perturbation theory predicts spectrum of observable states well in the SM
- Predictions: Structure and dynamics important
- Perturbation theory and FMS good if
 - BEH effect present
 - Outside threshold region

- FMS mechanism and perturbation theory predicts spectrum of observable states well in the SM
- Predictions: Structure and dynamics important
- Perturbation theory and FMS good if
 - BEH effect present
 - Outside threshold region
- Cannot predict reliably
 - Presence of BEH effect
 - Size of quantum corrections to the potential
 - Possible mass ranges for states

- FMS mechanism and perturbation theory predicts spectrum of observable states well in the SM
- Predictions: Structure and dynamics important
- Perturbation theory and FMS good if
 - BEH effect present
 - Outside threshold region
- Cannot predict reliably
 - Presence of BEH effect
 - Size of quantum corrections to the potential
 - Possible mass ranges for states
- What happens beyond the SM case?

Advertisment

55th International Winter School on Theoretical Physics **Bound States and Resonances**

13th-17th of Februrary 2017

Lecturers: I. Belyaev, C. Fischer, C. Pica, S. Prelovsek, R. Roth, A. Szczepaniak

Admont, Styria, Austria Lowest fee available

until 31st of July

St. Goar 2017 Bound States in QCD and Beyond II 20th-23rd of February 2017 St. Goar, Germany Official announcement coming soon!