Flux tubes at Finite Temperature

Pedro Bicudo, Nuno Cardoso and Marco Cardoso

CFTP, Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisbon, Portugal

bstract

 produced in pure gauge SU(3). The codes are written in CUDA and the computations are performed wied GPUs.

1. Introduction

We study of the chromo fieds distributions inside the flux tubes formed by polyakov loops in the static $Q Q, Q Q$ and $Q G$ systems. We address how the flux tube evolves with the distance between quarks and when the temperature increase beyond the deconfinement temperature. In section 2, we describe the lattice formulation. We briefly review the Polyakov loop for
 2. Computation of the chromo-fields in the flux tube

The central observables that govern the event in the flux tube can be extracted from the correlation of a plaquette, \square_{μ}, with the Polyakov loops, L

$$
\begin{equation*}
f_{\mu \nu}(r, x)=\frac{\beta}{2^{4}}\left[\frac{\left\langle\mathcal{O} \square_{\mu \nu}(x)\right\rangle}{\langle O\rangle}-\left\langle\square_{\mu \nu}(x)\right\rangle\right] \tag{}
\end{equation*}
$$

where

$$
\begin{array}{cl}
\mathcal{O}=L(0) L^{\dagger}(r) & \text { for the } Q \bar{Q} \text { system } \\
\mathcal{O}=L(\mu) L(r) & \text { for the } Q \text { System } \\
\mathcal{O}=\left(L\left(0 L^{亡}(0)-1\right) L(r)\right. & \text { for the } Q g \text { system },
\end{array}
$$

$$
\begin{equation*}
f_{\mu \nu}(r, x)=\frac{\beta}{a^{4}}\left[\frac{\left\langle\mathcal{O} \square_{\mu \nu}(x)\right\rangle-\left\langle\mathcal{O} \square_{\mu \nu}\left(x_{R}\right)\right\rangle}{\langle\mathcal{O}\rangle}\right] \tag{}
\end{equation*}
$$

Therefore, using the plaquette orientation $(\mu, \nu)=(2,3),(1,3),(1,2),(1,4),(2,4),(3,4)$, we can relate the six components in Eq. (2) to the components of the chromoelectric and chromomagnetic fields.

$$
\begin{equation*}
f_{\mu \nu} \rightarrow \frac{1}{2}\left(-\left\langle B_{x}^{2}\right\rangle,-\left\langle B_{y}^{2}\right\rangle,-\left\langle B_{z}^{2}\right\rangle,\left\langle E_{\chi}^{2}\right\rangle,\left\langle E_{y}^{2}\right\rangle,\left\langle E_{z}^{2}\right\rangle\right) \tag{3}
\end{equation*}
$$

and also calculate the total action (Lagrangian) density, $\langle\mathcal{L}\rangle=\frac{1}{2}\left(\left\langle E^{2}\right\rangle-\left\langle B^{2}\right\rangle\right)$
In order to improve the signal over noise ratio in the $Q \bar{Q}$ and $Q Q$ systems, we use the multihit technique, $[2,3]$, replacing each temporal link by it's thermal average, and the extended with the first neighbors, we fix the higher order neighbors, and apply the heat-bath algorithm to all the links inside, averaging the central link, the thermal average of a temporal link

$$
\begin{equation*}
U_{4} \rightarrow \bar{U}_{4}=\frac{\int\left[D U_{4}\right]_{\Omega} U_{4} e^{\beta \sum_{\mu}}, T \mathrm{Tr}\left[U_{\mu}(s) F(s)\right]}{\int\left[D U_{4}\right]_{4} e^{\beta \sum_{\mu, s}} \operatorname{Tr[U_{\mu }(s)F^{(s)}(s)}} \tag{4}
\end{equation*}
$$

By using $N=2$ we are able to greatly improve the signal, when compared with the e error reduction achieved with the simple multhit. Of course, this technique is more computer intensive than simple multihit, while being simpler to implement than multievel. The only restriction is $R>2 N$ for this technique to be valid.
3. Results

β	T / T_{c}	$a \sqrt{\sigma}$	\# config.
5.96	0.845	0.235023	5999
6.0534	0.986	0.201444	$5990 / 5110^{*}$
6.13931	1.127	0.176266	5999
6.29225	1.408	0.141013	5990
6.4249	1.690	0.117513	5990

The $Q \bar{Q}$ O The $Q Q$ and $Q \bar{Q}$ are located at $(0,-R / 2,0)$ and ($0, R / 2,0)$ for $R=4,6,8,10$ and 12 lattice spacing units. In Figs. 3 and 4 , we show the results for the $Q \bar{Q}$ system. As expected the
strength of the fields decrease with the temperature. Also, in the confined phase the width in the middle of the flux tube increases with the distance between the sources, while above the phase transition the width decreases with the distance.
Just below the phase transition, we need to make sure that we don't have contaminated configurations as arready mentioned in [6]. By plotting the histogram of Polyakov loop history for $\beta=6.055$, Fig. 1, we were able to identify a second peak which then we were able to remove all the configurations that lie on the second peak. Therefore in Table 1 the value with asterisk corresponds to the configurations after removing these contaminated configurations.
3. Results (cont.)

[^0]

Figigre 3 ；The resuls for the $Q \bar{Q}$ system．The results in the efft column correspond to the fields along the sources（plane XY）and the right column to the reselts in the middle of the flux tube（plane $X Z$ ）．R is the distance
betwen the surres in latice units．

3．Results（cont．）

王．$T=1.12659 T_{c} \mathrm{R}=1.41 \sqrt{\sigma}$

Figure 4 ：Results for the fields of the $Q \bar{Q}$ system in the middle of the flux tue in

 －$T=1.40823 T_{c} \quad \mathrm{R}=1.41 \sqrt{\sigma}$
（b）Q

4．Conclusions

sults for the single gluon system for $\beta=6.4249$
Figure T ：Results for the $Q G$ system for $\beta=6$ ．4249．R is the distance between the sources in lattice units，
As the distance increase between the sources，the fields square densities decrease．Below the deconfinement critical temperature，this decrease is moderate and is consistent with the widening of the flux tube as already seen in studies at zero temperature［4］］moreover the field strength clearly decreases as the temperature increases as expected from the crrtica
curve for the string tension［6］．Above the deconfinement critical temperature，the fields rapilly decrease to zero as the quarks are pulled apart，qualitatively consistent with screened Coulomb－like fields．While the width of the flux tube below the phase transition temperature increases with the separation between the quark－antiquark，above the phase transition the
width seems to decrease． dth seems to decre
 and GPU servers of PtQCD，supported by NVIDIA，CFTP and FCT grant UID／FIS／00777／2013

B．Y．Peng，R．W．Haymaker，SU（2）flux distributions on finite lattices，Phys．Rev．D 47 （1993）5104－5112．
［⿴囗十⺝丶 R．Brower，P．Rossi，C．－I．Tan，The External Field Problem for QCD，Nucl．Phys．B190（1981） 699
国 G．Parisi，R．Petronzio，F．Rapuano，A Measurement of the String Tension Near the Continuum Limit，Phys．Lett．B128（1983） 418.
［ N．Cardoso，M．Cardoso，P．Bicudo，Inside the SU（3）quark－antiquark QCD flux tube：screening versus quantum widening，Phys．Rev．D88（2013）054504 －R．G．Edwards，U．M．Heller，T．R．Klassen，Accurate scale determinations for the Wilson gauge action，Nucl．Phys．B517（1998）377－392．
－N．Cardoso，P．Bicudo，Lattice QCD computation of the SU（3）String Tension critical curve，Phys．Rev．D85（2012） 077501

[^0]:

