Neutrinoless Double Beta Decay from Lattice QCD

Amy Nicholson UC Berkeley Lattice 2016 Southampton, UK

Lepton Number

Neutrinos have no known charge or other additively conserved quantum number

Lepton Number

Neutrinos have no known charge or other additively conserved quantum number

π

 $\overline{\nu}_{R}$

 π^+

 μ^+

Lepton Number

Neutrinos have no known charge or other additively conserved quantum number

$$\mathcal{L}_5 = -m\left(\bar{L}\tilde{H}\right)\left(\tilde{H}L\right)^{\dagger}$$

- Why are neutrinos so light?
 - Dirac mass on its own requires fine-tuning

$$\mathcal{L}_5 = -m\left(\bar{L}\tilde{H}\right)\left(\tilde{H}L\right)^{\dagger}$$

- Why are neutrinos so light?
 - Dirac mass on its own requires fine-tuning

 $\left(\begin{array}{cc} M_L & M_D \\ M_D & M_R \end{array}\right)$

$$\mathcal{L}_5 = -m\left(\bar{L}\tilde{H}\right)\left(\tilde{H}L\right)^{\dagger}$$

- Why are neutrinos so light?
 - Dirac mass on its own requires fine-tuning

$$\mathcal{L}_5 = -m\left(\bar{L}\tilde{H}\right)\left(\tilde{H}L\right)^{\dagger}$$

- Why are neutrinos so light?
 - Dirac mass on its own requires fine-tuning

 $\left(\begin{array}{cc} 0 & M_D \\ M_D & M_R \end{array}\right)$

 Anything not forbidden by symmetry should occur in nature

$$\mathcal{L}_5 = -m\left(\bar{L}\tilde{H}\right)\left(\tilde{H}L\right)^{\dagger}$$

- Why are neutrinos so light?
 - Dirac mass on its own requires fine-tuning

 $\left(\begin{array}{cc} 0 & M_D \\ M_D & M_R \end{array}\right)$

 $m_l \sim M_D^2/M_R \quad m_h \sim M_R$

 Anything not forbidden by symmetry should occur in nature

$$\mathcal{L}_5 = -m\left(\bar{L}\tilde{H}\right)\left(\tilde{H}L\right)^{\dagger}$$

- Why are neutrinos so light?
 - Dirac mass on its own requires fine-tuning

 $\left(\begin{array}{cc} 0 & M_D \\ M_D & M_R \end{array}\right)$

 $m_l \sim M_D^2/M_R \quad m_h \sim M_R$

$M_D \sim 200 GeV \quad m_l \sim 0.05 eV$ $M_R \sim 10^{15} GeV$

If observed, could help explain matter/anti-matter asymmetry in the universe!

Jansen (1996) Bödeker, Moore, Rummukainen (2000) Fodor (2000)

Nuclear physics gives us a natural filter for the process

Nuclear physics gives us a natural filter for the process

Energetically forbidden

Nuclear physics gives us a natural filter for the process

Second order, allowed

Neutrinoless mode can be isolated using spectroscopic methods

Neutrinoless mode can be isolated using spectroscopic methods

Neutrinoless mode can be isolated using spectroscopic methods

Sno+ ¹³⁰Te

Gerda

⁷⁶Ge

How can LQCD contribute?

Standard picture: long-range contribution

Valle & Schecter, Fig.: H. Päs, W. Rodejohann New J.Phys. 17 (2015) no.11, 115010

Valle & Schecter, Fig.: H. Päs, W. Rodejohann New J. Phys. 17 (2015) no.11, 115010

Valle & Schecter, Fig.: H. Päs, W. Rodejohann New J. Phys. 17 (2015) no.11, 115010

Valle & Schecter, Fig.: H. Päs, W. Rodejohann New J. Phys. 17 (2015) no.11, 115010

Valle & Schecter, Fig.: H. Päs, W. Rodejohann New J.Phys. 17 (2015) no.11, 115010

Prezeau, Ramsey-Musolf, Vogel (2003)

Effective Lagrangian

$$\begin{split} \mathcal{L}^{q}_{0\nu\beta\beta} &= \frac{G_{\rm F}^{2}}{\Lambda_{\beta\beta}} \left\{ \left(o_{1}\mathcal{O}^{++}_{1+} + o_{2}\mathcal{O}^{++}_{2+} + o_{3}\mathcal{O}^{++}_{2-} + o_{4}\mathcal{O}^{++}_{3+} + o_{5}\mathcal{O}^{++}_{3-} \right) \bar{e}e^{c} \\ &+ \left(o_{6}\mathcal{O}^{++}_{1+} + o_{7}\mathcal{O}^{++}_{2+} + o_{8}\mathcal{O}^{++}_{2-} + o_{9}\mathcal{O}^{++}_{3+} + o_{10}\mathcal{O}^{++}_{3-} \right) \bar{e}\gamma^{5}e^{c} \\ &+ \left(o_{11}\mathcal{O}^{++,\mu}_{4+} + o_{12}\mathcal{O}^{++,\mu}_{4-} + o_{13}\mathcal{O}^{++,\mu}_{5+} + o_{14}\mathcal{O}^{++,\mu}_{5-} \right) \bar{e}\gamma_{\mu}\gamma^{5}e^{c} + \text{h.c.} \right\} \end{split}$$

Prezeau, Ramsey-Musolf, Vogel (2003)

- Nine operators:
 - $\pi \rightarrow \pi$: only need

parity even

• Vector operators suppressed by m_e

$$\begin{split} \mathcal{O}_{1+}^{ab} &= (\bar{q}_{\rm L} \tau^a \gamma^{\mu} q_{\rm L}) (\bar{q}_{\rm R} \tau^b \gamma_{\mu} q_{\rm R}), \\ \mathcal{O}_{2\pm}^{ab} &= (\bar{q}_{\rm R} \tau^a q_{\rm L}) (\bar{q}_{\rm R} \tau^b q_{\rm L}) \pm (\bar{q}_{\rm L} \tau^a q_{\rm R}) (\bar{q}_{\rm L} \tau^b q_{\rm R}), \\ \mathcal{O}_{3\pm}^{ab} &= (\bar{q}_{\rm L} \tau^a \gamma^{\mu} q_{\rm L}) (\bar{q}_{\rm L} \tau^b \gamma_{\mu} q_{\rm L}) \pm (\bar{q}_{\rm R} \tau^a \gamma^{\mu} q_{\rm R}) (\bar{q}_{\rm R} \tau^b \gamma_{\mu} q_{\rm R}), \\ \mathcal{O}_{4\pm}^{ab,\mu} &= (\bar{q}_{\rm L} \tau^a \gamma^{\mu} q_{\rm L} \mp \bar{q}_{\rm R} \tau^a \gamma^{\mu} q_{\rm R}) (\bar{q}_{\rm L} \tau^b q_{\rm R} - \bar{q}_{\rm R} \tau^b q_{\rm L}), \\ \mathcal{O}_{5\pm}^{ab,\mu} &= (\bar{q}_{\rm L} \tau^a \gamma^{\mu} q_{\rm L} \pm \bar{q}_{\rm R} \tau^a \gamma^{\mu} q_{\rm R}) (\bar{q}_{\rm L} \tau^b q_{\rm R} + \bar{q}_{\rm R} \tau^b q_{\rm L}). \end{split}$$

Effective Lagrangian

$$\begin{split} \mathcal{L}^{q}_{0\nu\beta\beta} \ = \ \frac{G_{\rm F}^{2}}{\Lambda_{\beta\beta}} \left\{ \left(o_{1}\mathcal{O}^{++}_{1+} + o_{2}\mathcal{O}^{++}_{2+} + o_{3}\mathcal{O}^{++}_{2-} + o_{4}\mathcal{O}^{++}_{3+} + o_{5}\mathcal{O}^{++}_{3-} \right) \bar{e}e^{c} \\ & + \left(o_{6}\mathcal{O}^{++}_{1+} + o_{7}\mathcal{O}^{++}_{2+} + o_{8}\mathcal{O}^{++}_{2-} + o_{9}\mathcal{O}^{++}_{3+} + o_{10}\mathcal{O}^{++}_{3-} \right) \bar{e}\gamma^{5}e^{c} \\ & + \left(o_{11}\mathcal{O}^{++,\mu}_{4+} + o_{12}\mathcal{O}^{++,\mu}_{4-} + o_{13}\mathcal{O}^{++,\mu}_{5+} + o_{14}\mathcal{O}^{++,\mu}_{5-} \right) \bar{e}\gamma_{\mu}\gamma^{5}e^{c} + \text{h.c.} \right\} \end{split}$$

Prezeau, Ramsey-Musolf, Vogel (2003)

- Nine operators:
 - $\pi \rightarrow \pi$: only need

parity even

• Vector operators suppressed by m_e

$$\begin{split} \mathcal{O}_{1+}^{ab} &= (\bar{q}_{\mathrm{L}}\tau^{a}\gamma^{\mu}q_{\mathrm{L}})(\bar{q}_{\mathrm{R}}\tau^{b}\gamma_{\mu}q_{\mathrm{R}}),\\ \mathcal{O}_{2\pm}^{ab} &= (\bar{q}_{\mathrm{R}}\tau^{a}q_{\mathrm{L}})(\bar{q}_{\mathrm{R}}\tau^{b}q_{\mathrm{L}}) \pm (\bar{q}_{\mathrm{L}}\tau^{a}q_{\mathrm{R}})(\bar{q}_{\mathrm{L}}\tau^{b}q_{\mathrm{R}}),\\ \mathcal{O}_{2\pm}^{ab} &= (\bar{q}_{\mathrm{L}}\tau^{a}\gamma^{\mu}q_{\mathrm{L}})(\bar{q}_{\mathrm{L}}\tau^{b}\gamma_{\mu}q_{\mathrm{L}}) \pm (\bar{q}_{\mathrm{R}}\tau^{a}\gamma^{\mu}q_{\mathrm{R}})(\bar{q}_{\mathrm{R}}\tau^{b}\gamma_{\mu}q_{\mathrm{R}}),\\ \mathcal{O}_{4\pm}^{ab,\mu} &= (\bar{q}_{\mathrm{L}}\tau^{a}\gamma^{\mu}q_{\mathrm{L}} + \bar{q}_{\mathrm{R}}\tau^{a}\gamma^{\mu}q_{\mathrm{R}})(\bar{q}_{\mathrm{L}}\tau^{b}q_{\mathrm{R}} - \bar{q}_{\mathrm{R}}\tau^{b}q_{\mathrm{L}}),\\ \mathcal{O}_{5\pm}^{ab,\mu} &= (\bar{q}_{\mathrm{L}}\tau^{a}\gamma^{\mu}q_{\mathrm{L}} \pm \bar{q}_{\mathrm{R}}\tau^{a}\gamma^{\mu}q_{\mathrm{R}})(\bar{q}_{\mathrm{L}}\tau^{b}q_{\mathrm{R}} + \bar{q}_{\mathrm{R}}\tau^{b}q_{\mathrm{L}}). \end{split}$$

Effective Lagrangian

$$\begin{split} \mathcal{L}^{q}_{0\nu\beta\beta} &= \frac{G_{\rm F}^{2}}{\Lambda_{\beta\beta}} \left\{ \left(o_{1}\mathcal{O}^{++}_{1+} + o_{2}\mathcal{O}^{++}_{2+} + o_{3}\mathcal{O}^{++}_{2-} + o_{4}\mathcal{O}^{++}_{3+} + o_{5}\mathcal{O}^{++}_{3-} \right) \bar{e}e^{c} \\ &+ \left(o_{6}\mathcal{O}^{++}_{1+} + o_{7}\mathcal{O}^{++}_{2+} + o_{8}\mathcal{O}^{++}_{2-} + o_{9}\mathcal{O}^{++}_{3+} + o_{10}\mathcal{O}^{++}_{3-} \right) \bar{e}\gamma^{5}e^{c} \\ &+ \left(o_{11}\mathcal{O}^{++,\mu}_{4+} + o_{12}\mathcal{O}^{++,\mu}_{4-} + o_{13}\mathcal{O}^{++,\mu}_{5+} + o_{14}\mathcal{O}^{++,\mu}_{5-} \right) \bar{e}\gamma_{\mu}\gamma^{5}e^{c} + \text{h.c.} \right\} \end{split}$$

Prezeau, Ramsey-Musolf, Vogel (2003)

- Nine operators:
 - $\pi \rightarrow \pi$: only need

parity even

• Vector operators

suppressed by m_e

$$\begin{split} \mathcal{O}_{1+}^{ab} &= (\bar{q}_{\mathrm{L}}\tau^{a}\gamma^{\mu}q_{\mathrm{L}})(\bar{q}_{\mathrm{R}}\tau^{b}\gamma_{\mu}q_{\mathrm{R}}),\\ \mathcal{O}_{2\pm}^{ab} &= (\bar{q}_{\mathrm{R}}\tau^{a}q_{\mathrm{L}})(\bar{q}_{\mathrm{R}}\tau^{b}q_{\mathrm{L}}) \pm (\bar{q}_{\mathrm{L}}\tau^{a}q_{\mathrm{R}})(\bar{q}_{\mathrm{L}}\tau^{b}q_{\mathrm{R}}),\\ \mathcal{O}_{a\pm}^{ab} &= (\bar{q}_{\mathrm{L}}\tau^{a}\gamma^{\mu}q_{\mathrm{L}})(\bar{q}_{\mathrm{L}}\tau^{b}\gamma_{\mu}q_{\mathrm{L}}) \pm (\bar{q}_{\mathrm{R}}\tau^{a}\gamma^{\mu}q_{\mathrm{R}})(\bar{q}_{\mathrm{R}}\tau^{b}\gamma_{\mu}q_{\mathrm{R}}),\\ \mathcal{O}_{4\pm}^{ab,\mu} &= (\bar{q}_{\mathrm{L}}\tau^{a}\gamma^{\mu}q_{\mathrm{L}} + q_{\mathrm{R}}\tau^{a}\gamma^{\mu}q_{\mathrm{R}})(q_{\mathrm{L}}\tau^{b}q_{\mathrm{R}} - \bar{q}_{\mathrm{R}}\tau^{b}q_{\mathrm{L}}),\\ \mathcal{O}_{5\pm}^{ab,\mu} &= (\bar{q}_{\mathrm{L}}\tau^{a}\gamma^{\mu}q_{\mathrm{L}} \pm \bar{q}_{\mathrm{R}}\tau^{a}\gamma^{\mu}q_{\mathrm{R}})(\bar{q}_{\mathrm{L}}\tau^{b}q_{\mathrm{R}} + \bar{q}_{\mathrm{R}}\tau^{b}q_{\mathrm{L}}). \end{split}$$

Calculate LECs; EFT then determines nn \rightarrow pp transition via pion exchange diagram

$0\nu\beta\beta$ -decay ops.	$\mathcal{O}_{1+}^{\pm\pm}$	$\mathcal{O}_{2+}^{\pm\pm}$	$\mathcal{O}_{2-}^{\pm\pm}$	$\mathcal{O}_{3+}^{\pm\pm}$	$\mathcal{O}_{3-}^{\pm\pm}$	$\mathcal{O}_{4+}^{\pm\pm,\mu}$	$\mathcal{O}_{4-}^{\pm\pm,\mu}$	$\mathcal{O}^{\pm\pm,\mu}_{5+}$	$\mathcal{O}_{5-}^{\pm\pm,\mu}$
$\pi\pi ee \text{ LO}$	✓	✓	X	X	X	X	X	X	X
$\pi\pi ee$ NNLO	 ✓ 	✓	X	✓	X	X	X	X	X
$NN\pi ee$ LO	X	X	\checkmark	X	X	\checkmark	\checkmark	\checkmark	\checkmark
$NN\pi ee$ NLO	X	\checkmark	X	\checkmark	X	\checkmark	\checkmark	\checkmark	\checkmark
NNNNee LO	\checkmark	\checkmark	X	\checkmark	X	\checkmark	\checkmark	\checkmark	\checkmark

Left-right symmetric models

Prezeau, Ramsey-Musolf, Vogel (2003), Savage (1999)

Contractions

- Exact momentum projection at source and sink
- Must add color mixed versions of

Prezeau, Ramsey-Musolf, Vogel ops 1&2

$$\mathcal{O}_{1+}^{++} = \left(\bar{q}_{L}\tau^{-}\gamma^{\mu}q_{L}\right)\left[\bar{q}_{R}\tau^{-}\gamma_{\mu}q_{R}\right]$$
$$\mathcal{O}_{1+}^{++} = \left(\bar{q}_{L}\tau^{-}\gamma^{\mu}q_{L}\right)\left[\bar{q}_{R}\tau^{-}\gamma_{\mu}q_{R}\right)$$
$$\mathcal{O}_{2+}^{++} = \left(\bar{q}_{R}\tau^{-}q_{L}\right)\left[\bar{q}_{R}\tau^{-}q_{L}\right] + \left(\bar{q}_{L}\tau^{-}q_{R}\right)\left[\bar{q}_{L}\tau^{-}q_{R}\right]$$
$$\mathcal{O}_{2+}^{'++} = \left(\bar{q}_{R}\tau^{-}q_{L}\right)\left[\bar{q}_{R}\tau^{-}q_{L}\right) + \left(\bar{q}_{L}\tau^{-}q_{R}\right)\left[\bar{q}_{L}\tau^{-}q_{R}\right)$$
$$\mathcal{O}_{3+}^{++} = \left(\bar{q}_{L}\tau^{-}\gamma^{\mu}q_{L}\right)\left[\bar{q}_{L}\tau^{-}\gamma_{\mu}q_{L}\right] + \left(\bar{q}_{R}\tau^{-}\gamma^{\mu}q_{R}\right)\left[\bar{q}_{R}\tau^{-}\gamma_{\mu}q_{R}\right)$$

 q_R

Contractions

- Exact momentum projection at source and sink
- Must add color mixed versions of

Prezeau, Ramsey-Musolf, Vogel ops 1&2

$$\mathcal{O}_{1+}^{++} = \left(\bar{q}_L \tau^- \gamma^\mu q_L\right) \left[\bar{q}_R \tau^- \gamma_\mu q_R\right]$$
$$\mathcal{O}_{1+}^{++} = \left(\bar{q}_L \tau^- \gamma^\mu q_L\right) \left[\bar{q}_R \tau^- \gamma_\mu q_R\right)$$
$$\mathcal{O}_{2+}^{++} = \left(\bar{q}_R \tau^- q_L\right) \left[\bar{q}_R \tau^- q_L\right] + \left(\bar{q}_L \tau^- q_R\right) \left[\bar{q}_L \tau^- q_R\right]$$
$$\mathcal{O}_{2+}^{++} = \left(\bar{q}_R \tau^- q_L\right) \left[\bar{q}_R \tau^- q_L\right) + \left(\bar{q}_L \tau^- q_R\right) \left[\bar{q}_L \tau^- q_R\right)$$
$$\mathcal{O}_{3+}^{++} = \left(\bar{q}_L \tau^- \gamma^\mu q_L\right) \left[\bar{q}_L \tau^- \gamma_\mu q_L\right] + \left(\bar{q}_R \tau^- \gamma^\mu q_R\right) \left[\bar{q}_R \tau^- \gamma_\mu q_R\right]$$

HISQ ensembles

$a[fm]: m_{\pi}[MeV]$ 310		220	135		
0.15	$16^3 \times 48, m_{\pi}L \sim 3.78$	$24^3 \times 48, m_{\pi}L \sim 3.99$	$32^3 \times 48, m_{\pi}L \sim 3.25$		
0.12		$24^3 \times 64, m_{\pi}L \sim 3.22$			
0.12	$24^3 \times 64, m_{\pi}L \sim 4.54$	$32^3 \times 64, m_{\pi}L \sim 4.29$	$48^3 \times 64, m_{\pi}L \sim 3.91$		
0.12		$40^3 \times 64, m_{\pi}L \sim 5.36$			
0.09	$32^3 \times 96, m_{\pi}L \sim 4.50$	$48^3 \times 96, m_{\pi}L \sim 4.73$			

- Möbius DWF on HISQ
- Gradient flow method for smearing configs
 - m_{res} < 0.1 $m_{\ell}\,$ for moderate L_5
- Wall + point sources for pions
- ~ 1000 cfgs, 1 source/cfg

MILC Collaboration Phys. Rev. D87 (2013) 054505 Narayanan, Neuberger (2006), Luscher (2010) K. Orginos, C. Monahan (private communication)

Summary

- $0\nu\beta\beta$: search for Majorana mass signature
 - Lepton number violation could be source of matter/anti-matter asymmetry
 - Huge experimental efforts planned/underway
 - LQCD can make major impact on understanding of short-range operators
- Preliminary results for $\pi^{-} \rightarrow \pi^{+}$ matrix element
 - Multiple pion masses, lattice spacings, volumes
 - Pion mass dependence as expected from chiral EFT counting
- To do:
 - Renormalization Buras, Misiak, Urban (2000), Tiburzi (2012)
 - Extrapolations in pion mass/lattice spacing
 - Other contact operators....

• LO almost complete!

- LO almost complete!
- NLO: disconnected diagrams

Contact operators

- LO almost complete!
- NLO: disconnected diagrams
 - Don't contribute to $0^+ \rightarrow 0^+$ nuclear transitions

Contact operators

- LO almost complete!
- NLO: disconnected diagrams
 - Don't contribute to $0^+ \rightarrow 0^+$ nuclear transitions
- nn → pp contact operators

*Doi & Endres, Originos et. al., Günther et. al.

Contractions

- Isospin limit: 576 contractions
- Extension of unified contraction method*
- Need position space source & sink
 - otherwise all-to-all propagators connect to 4-quark operator
 - stochastically project onto zero total momentum

n

n

Iso-clover cfgs (W. Detmold, R.Edwards, D. Richards, K. Orginos)

Need displaced operators!

Iso-clover cfgs (W. Detmold, R.Edwards, D. Richards, K. Orginos)

Finite volume formalism for 2 → 2 matrix elements completed:
R. Briceño, M. Hansen Phys.Rev. D94 (2016) no.1,013008
Renormalization known in MS:
B. Tiburzi Phys.Rev. D86 (2012) 097501

- LBL/UCB: Chia Cheng Chang, AN, André Walker-Loud,
- LLNL: Evan Berkowitz, Enrico Rinaldi, Pavlos Vranas
- NERSC: Thorsten Kurth
- JLab: Balint Jóo
- CCNY: Brian Tiburzi
- nVidia: Kate Clark

Ton-scale Neutrinoless Double Beta Decay (Ονββ) - A Notional Timeline

Search for Lepton Number Violation

