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Overview

Lattice QCD at strong coupling: dual approach to QCD
The phase diagram at leading order in 3
Towards higher order gauge corrections

Preliminary results on the nuclear/chiral transition
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QCD Phase Diagram and Sign Problem

@ Sign problem: no direct RHMC simulations at finite p

Quark Quark
Gluon Gluon
Plasma Plasma
00+ (@w)=0 .
S\%% Terra Incognita
&
Hadronic Matter & Hadronic Matter
Nuclear Quarkyonic /* Color Nuclear
Vacuum Matter Matter > [ super- Vacuum Matter
Neutron Stars conductor?
' > >
t > + >
0 1 w, [GeV] 0 1 u, [GeV]

@ Complex Langevin: not (yet) ready to address confined phase,
also needs to be crosschecked (convergence issue)

@ Lefshetz Thimbles: challenging to adapt to SU(3) and 4 dimensions

[ Sign problem is representation dependent: Dual Representation of QCD ]
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Lattice QCD at strong coupling

Alternative approach: ’
PP U'(x—i) U,(x)
Plx—w) W(x)w(x) Wlx+u)
8 8o _ 6
Limit of strong coupling: 3 = =z 0 - + B
Px)w(x)

o gauge fields U, (x) can be integrated out goefpt o wriy. . a0, v, 4]
@ “dual” representation: via color singlets on the links!

@ at strong coupling: mesons and baryons (B) 1 )
alP) Jattice spacing
(non-perturbative, e.g. from T, M,,<{p>)

Advantage:
@ very mild sign problem

@ fast simulations (no supercomputers necessary)

= complete phase diagram can be calculated
Caveat: B=0 B> o

@ was limited to infinitely strong coupling — coarse lattices

@ continuum limit?!?

[ Necessary to extend to 5 > 0 J
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Strong Coupling Partition Function

Dualization for staggered fermions: Mapping onto discrete system:
[Rossi & Wolff, 1984], [Karsch & Miitter, 1989]

Zr(mq, 1) = Z H NNkakb H/'YII (2amgq)™ HW(E 1)

{k,n,€} b=(x,p1)

H—’
meson hoppings My My, chiral condensate 11 baryon hoppings BXBy
ky € {0,... Nc}, ny € {0,... Nc}, €, € {0, £1}, QCD: N =3
@ Grassmann constraint: [— LA =
é c_o_”—o—o [I_E
Ne
met Z ("ﬂ(X)+ T\Eﬂ(X)I) =N = $—o—— ‘j o=
f=+0,...+d L — =
° welgh't w(l, 1) and.5|gn o(f) € {-1,+1} D I: .
for oriented baryonic loop £ depends on |_ $
loop geometry e b =
@ next talk by Jangho Kim: finite mq Y 4 !

finite quark mass
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Strong Coupling Partition Function

Dualization for staggered fermions: Mapping onto discrete system:
[Rossi & Wolff, 1984], [Karsch & Miitter, 1989]

Ze(my = 3 T1 ("’Nka")'w [Twen
—_————

{kn, £} b=(x,p)

——
meson hoppings MxM,,  chiral condensate 1) baryon hoppings BXBy
ky € {0,... Nc}, ny € {0,... Nc}, €, € {0, £1}, QCD: N =3

@ Grassmann constraint: : _—”__ ”_—
S (b0 Fiescn) = = k3
p=+0,...+d = J—

@ weight w(¢, 1) and sign o(¢) € {-1,+1} __J I:_
for oriented baryonic loop ¢ depends on — = =5
loop geometry I:__=__:| —

@ this talk: consider chiral limit

v i !

chiral limit: monomers absent
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Strong Coupling Partition Function

Dualization for staggered fermions: Mapping onto discrete system:

[Rossi & Wolff, 1984], [Karsch & Miitter, 1989]

Ze(my = 3 T1 ("’Nka")'w [Twen
—_————

{kn, £} b=(x,p)

——
meson hoppings MxM,,  chiral condensate 1) baryon hoppings BxBy
ky € {0,... Nc}, ny € {0,... Nc}, €, € {0, £1}, QCD: N =3

@ Worm algorithm [Prokof’ev & Svistunov 2001]:

sampling 2-monomer sector ‘ _”__ ”_

(for U(3): [Adams & Chandrasekharan, 2003]) —
@ SU(3): Worm both in mesonic and = To— -

baryonic sector __| l_

Local Metropolis, 4’x2 at j, m, =0025 Worm, same parameter set
1
¥ —I: :I_
;0!' W Yy [I\ a, 708

i
3 35 4 a5 0 o5 1 15 25 3 85 4

2 25
1ot #iterations Y £ t

Sroratons

during Worm evolution
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The Phase Diagram in the Strong Coupling Limit

Comparison of phase boundaries ( T¢, ) for massless quarks [de Forcrand & U. (2011)]:

T [lat. units]
1.8
16 - o
(yy)=0
140 Bom g 4
B
12 F 2" order E
tricritical
1F point B
0.8 4
0.6 [ 15! order E
04 F = g
Wy)#0 i
0.2 | B
0 Il Il Il Il Il
0 0.5 1 1.5 2 25 3
ug [lat. units]

measured at strong coupling

@ Similar to standard scenario of continuum QCD

T[MeV]
3
200 T
Quark
":’7"’.(;;'.? _ TCp Gluon
O o Plasma

100

2
; %,
Hadronic Matter ~

Nuclear Color
Vacuum Matter Matter ? Super-
Neutron Stars conductor?
L »
t -
1 M I][Gev]

speculated in continuum

[Stephanov et al. PRL 81 (1998)]

@ However, nuclear and chiral transition coincide at 5 =0
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Relation Between Chiral and Nuclear Transition at 7 =10
Chiral Transition at Strong Coupling:

@ chiral symmetry: U(1)ss : p(x) = el€x)0s5qp(x),

E(X) — (_1)x1+xz+><3+><4
is spontaneously broken at low temperatures/densities

@ chiral transition: spatial dimers vanish, at small p: 2nd order with O(2) exponents
Nuclear Transition (below TCP):

@ baryon crystal forms (Pauli saturation)

@ coincides with chiral transition: <1Zw> vanishes as baryonic crystal forms

aT )
SC Phase Diagram
“/y Chiral Trans. for massless quarks
—
2%order | <~ ~.
S~ — -
N
‘e, TS T u > me
tricritical
1% order
Chiral & |
Nuclear
1> Trans. -—
> au

T=0p>p
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Polyakov Loop, Baryon Density and Plaquettes

Polyakov Loop

tricritical #-E3
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Baryon Density
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Sign Problem in Dual Representation (Strong Coupling)

aT 2

1.5

0.5
2”‘1 order v -- -~
15! order —+—
[
0 ——
0 0.2 0.4 0.6 0.8 1 1.2 1.4
au

. . _y
@ average sign: (sign) ~ e~ T4f

@ volumes 32° x N, can be easily simulated at tricritical point

@ sign problem more severe at low temperatures
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Including the gauge corrections

@ QCD Partition function via strong coupling expansion in [3:

Zaco = / dpdipdUe’ 5 = / dydyZe (%),

(0),, = Zi dUOe™F,  Zp = / dUe™>F = H z(x, 1)
F 1=Geom)
@ expand gauge action to some order in 3:
B
(€%),, = 14 (Sc)z + O(FY) = 14 5 > (ulUp + U}]) , +O(5°)
P

— additional color singlet link states

(MM} O(B) B ——» Baryonic Quark Flux
—p qg ——»  Mesonic Quark Flux
———»  Gauge Flux
BB
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Link Integrations for O(5) diagrams

One-Link integrals for links on the edge of an excited plaquette:
[Azakov & Aliev, Physica Scripta 38 (1988)]

1 o 1 - _
Ji 72 N |(k 1)|(MXM‘P) XjSDi - Nel(Ne — 1)!6f"1i2€J'J'1J'2‘/’i1‘Pi2XJ1XJz - WCBwaXJGDi

Dy =mesons+qg Bi1=qqg By=meson+qqg
baryon+qg

@ determine plaquette link product P = tr[JiJiJimImi]

@ result can be consistently re-expressed via
link weights: w(Dy) = %, w(By) = m, w(B:) = l)l
and site weights: vi = V!, w=(N.—-1)l, w=1

B, — 7 7 7

v v, v
D.
A

@ Grassman constraint on sites touching a plaquette altered No. — N + 1
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Gauge corrections to the phase diagram at strong coupling

State of the art: O(3) corrections for SU(3)

[Langelage, de Forcrand, Philipsen & U., PRL 113 (2014)]

T [lat. units]
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point

1.6
14
12 f
]
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L ., e r‘nljcleal,rﬂ"
e GEP
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1B X
1.2
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Matter

Questions we want to address:
@ Do the nuclear and chiral transition split?

@ Does the tricritical point move to smaller or larger 1 as (3 is increased?
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First step: obtain higher order gauge integrals: O(5""*)

N _
@ need to determine one-link integrals, with quark matrices M;; = > ¥/ (x)d/(y):
f=1
ris r[UMT+mut
Tdrtkns = / dU e M MY G U (U - (U,

SU(3) from quark action from gluon action

@ in the strong coupling limit, link integration for 7°° factorizes!

@ 3 > 0: tensorial structure, but still true that gauge integrals can be decomposed
into linear combinations of invariants

. H H H r;s — K1,MK2,5
@ strategy: expand exponential of fermion action ‘7(i,j)1;r(k,/)1:s = > ’C(f,j)l;,(k,l)m
R1,Rk2

K K2
: 1 | :
K1,/K2,S _ Ty, . K1+riko+s
K hrtions = PPN Z H(M iass HMkb’b I(f,j)l:w,(k,/)mzﬁ
{iasiarskp;lp} \a=1 b=1
@ k1 quark hoppings, k2 anti-quark hoppings: |k1 — k2 + r — s| € {0, Nc, 2N, ...}
@ color and flavor structure intimately linked!

@ Integrals I(a,f’j’.) = f dU Uyj, ... Uy, (UND Ky . (U, are known,
sU(3)

a(ks D1y

recursive [M. Creutz, 1980], or expressed by Young projectors [J. Myers, 2014]:
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Gauge Integrals and Characters of S,

At strong coupling, general result for any number of flavors N;:

Kg* =3 5 [T Te[(Msy )] g

AT i=1 A Dy

@ X} is character of symmetric group S,, Dy is dimension of SU(N) representation
A, ¢, is degeneracy of cycle structure
@ )\ encodes N.-dependence, 7 for Ni-dependence, e.g.

3P 1

¥ = & MonT Dy LN~ TMy I+ SN THM T TH{(M) )]+ 4T5((My )]

@ Generalization for higher order gauge corrections possible, e.g.
1,2,3,0 1 2 i i
K, = Ne(NZ — 1)(N.2 —4) [(Nc + Ne — 2)Tr[QV] Tr[Q2] Tr[My ]
+ NeTR[ Q™ Q2] Te[My ] + NeTr[My, Q1] Tr[@,,1,] + 4Tr[My Q1 @22
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Plaquette and Flux Variables

New interpretation of dual representation:
@ at strong coupling limit: dimers=meson hoppings, 3-fluxes=baryons
color singlets (=U(3) sector),

@ away from strong coupling limit: dimers
3-fluxes = color triplets

@ in principe: also 6-flux, 9-flux,. . .sectors, but neglected here

Plaquette occupation numbers at plaquette coorinate P:
@ equivalence classes of difference of fundamental plaquettes Tr[Up]

and anti-fundamental plaquettes Tr[U;r,] from gauge action:

np = n¢(P) — na(P) = B +— U(3) sectors within u(3)

@ plaquette fluxes induce links fluxes f, and defines flux sites f:

bz -1““1-1b.d-1

-1“1 1‘-1-2

Nuclear and Chiral Transition in Strong Coupling Regime Southampton, 29.07.2016
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Second step: Grassmann integration

Recall: gauge integration before Grassmann integration (no fermion determinant)
@ free color indices need to be contracted at each site (for given ensemble of plaquettes)
@ in general, gives rise to tensor networks/vertex model — (too) difficult!

Simplification in the U(3) sector:
@ plaqutte occupations np, n,s € Z can only differ by +1 if p, p’ adjacent

@ plaqutte occupations np, n,s € Z cannot share a site if they don’t share a link

Tiiji= Zu Ui Iy i34 9,94.93, )
Different Contractions have opposite sign

. => Cancellation!
LR I,
- o
K, Ju,

1 -1

D

—lbl

1 1 1

1 1
)

i

= [ Gauge fluxes f, form self-avoiding loops! ]

@ Does not apply to the additional SU(3) contributions: so far restricted to first non-trivial
contribution (3-flux sector)
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MDP+P partition function:

B [np|
)

singlet hoppings Mx My, chiral condensate 1) triplet hoppings By By gluon propagation

ky €{0,... Ne}, nx €{0,... Nc}, £, € {0, £1}, o, =0np, =35>, f

mn= 3 ] =t I o TTween T ;
¢ P

{k,n,€,np} b=( X

@ color constraint: N,
nx + E ka(x) + 7\@1(X)| = Ne + £

f=+0,...+d

@ 3-flux weight involves additional site weights v; and link weights:
Ne—1)1(Ne—2)!
w(Bs) = Nc!(NC—ll)!(NC—Q)I’ w(Bs) = : 1I)V£! 2

@ sign: combine gauge flux f, with triplet flux ¢, to identify fermionic loops /:

o(C) = (_1)L(C)+W(C)+N_(C) HW(X)

{ QCD lattice partition function correct up to O(5°) ]
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MDP+P Ensembles (2-dim for visualization)

B =1.0, u=0.5 (liquid phase)
MDP ensemble:

L+l Tl L A
0 Tl I A
L+l |ty L L | A
4 4 [ e T
Flux ensemble:
—1 22 151 141 =1
T T -1
1 1 1 1 1 1—1 1 1
Tl T
1—1 1 1— 1+1
Tl T1
11 2=2 1+1 1—1
T2y T1
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Nuclear and Chiral Transition at T = 0 - ongoing analysis

average sign on 4%xa

0 02 04 06 08 1
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Nuclear and Chiral Transition at T = 0 - ongoing analysis

baryon density

1 R
p
0.0 —+—
0.1 —>—
05 —+—
1.0 —=—
0.8 - 2.0 B
50 —e—
0.6 |- 4
/
W\
04 | \\‘ b
|
0.2 | 4
(
i N
0 _ " = = & ‘i’@ /\ \‘ !
0 0.2 0.4 0.6 0.8 1
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Nuclear and Chiral Transition at T = 0 - ongoing analysis

chiral susceptibility
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Conclusions

Results:

@ all gauge integrals needed for O(3%) and related to group characters

@ Grassmann integration simplifies in U(3) sector

@ sign problem mild enough to go beyond 3 > 1, but hard at T = 0 (even at 8 = 0)
°

simulations with O(3)° corrections included but not conclusive yet concerning
nuclear vs. chiral transition (weak dependence on (3)

@ split between chiral and nuclear transition might be very small in nature

Goals:
@ improve plaquette algorithm — incorporate character expansion

@ generalize plaquette algorithm to non-trivial anisotropy a/a: = (7, Bs/ft)
to study various T (— talk by Hélvio Vairinhos: a/a; = f(y) at 8 =0)

@ surpass the roughening transition at 5 ~ 5.9: sampling of all orders needed

@ other dualizations? (— talk by Carla Marchis)
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Backup: Connection Between Strong Coupling and
Continuum Limit?

One of several possible scenarios
for the extension to the continuum:

@ back plane: strong coupling \ o
phase diagram (8 = 0),
Ny =1

@ front plane: continuum phase w/mpg
diagram (8 = o0, a = 0) 4 /

@ due to fermion doubling, A
corresponds to Nf = 4 in k\

continuum (no rooting) 7 —
B Chiral Transition Nuclear Transition
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Backup: Young Tableaux - Color Structure

So, what are the C] (and for O(8), O(B?): C{*"*, C "2, etc) ?

@ answer: related to irreducible representations of the symmetric group S, with
n=r1+r=kKy+s

1=(4) 2=(3,1) 2=(2.2) 2=(2,1,1)  A=(1,1,1,1)
d=1 d=3 d=2 d=3 d=1
- WZE Eﬁ [+]]
B 2]
B
Young Tableaux A = (A1, ... Ax): EZ. Eﬁ 18
@ Standard Young tableaux [2]
correspond to irreps of S, with EE.
dimension d) = % with Hook
lengths H) >
@ used to determine dimension 2
Dy = %\- of irreps of SU(Nc) — -
:mzj':’ F=N_(N}-1)(N+2)  F=N(N!-1) F=N/(N-1)(N-2) FZKN%M!
K- | [~] I
=] K1 e
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Backup: Young Tableaux - Flavor Structure

So, what are the C] (and for O(8), O(B?): C{*"*, C "2, etc) ?

@ answer: related to irreducible representations of the symmetric group S, with

n=r1+r=kKy+s

Young Tableaux 7 = (t1, ... tx):
@ conjugacy classes

<> cycle structure of S,
< flavor permutations

@ at a given order n, the trace
structure 7 = (t1,... tx) with
T = [[ Tr[M,]% is equivalent
to a partition of n: Y iti=n

i

Ir[MJ* o[ MM Tr[M]

@ example: m = (136)(24)(58)(7) c=1 c=6 =3
— t1=1,t=2t3=1 o o _— —
o o o o _

Wolfgang Unger Nuclear and Chiral Transition in Strong Coupling Regime
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Backup: Table of Characters and Invariants

T A (1,1,1,1)  (2,1,1) (2,2) (3,1) (4) Sum
(4,0,0,0 1 3 2 3 1 10
(2,1,0,0) 1 1 0 1 -1 0
(0,2,0,0) 1 -1 2 11 2
(1,0,1,0) 1 0 1 0o 1 1
(0,00,1 1 1 0 11 0

Sum 5 2 3 2 1
Table: Characters x3 for n =4

T A (LL1,1) (2,.,1) (2,2) (3,1) (4 Sum
(4,0,0,0 1 9 4 9 1 24
(2.1,0,0) 6 18 0 -18 -6 0
(0,2,0,0) 3 9 12 9 3 0
(1,0,1,0) 8 0 -16 0o 8 0
(0,0,0,1 6 -18 0 18 -6 0

Sum 24 0 0 0 0

Wolfgang Unger

Table: Invariants Cy for n =4
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Backup: Relationship to the Character Expansion

@ Define Bessel Determinants:

In(x) In41(x)  Iny2(x)

In+1(X) In+2(x) In+3(x)

DP9 =] hoa(x)  ha(x) hea(x) [0 = | i) () (%)
h—2(x)  lh—1(x) In(x) hho2(x)  Ih_1(X) In(x)
@ fundamental character inx=% = 2?[ :
g c
for U(3): u(B) = e _ B gl g g
Dl() Vax) | bt gy i+ Syt 2 T304
> b x)
for SU(3): u(B) = === _ grctan X +5X4+2><6+1 KBy JL6 L SXBAN Ty
1+i +Ex + x4+ X5+2><6+1 6+ 23 X8t
S o A
n=—o0

@ character expansion recovered, but not limited to Wilson loops!

1 (mesonic) L3 L6 Lg Ly
1 (baryonic) 1 1 5 42 462 2 2 P

(LL*) 1 3 21 210 2574 :
(LL*)? 2 11 98 1122 15015 - -

LL*)3 6 74 498 6336 91001 Bﬂ
(LL*) 23 225 2709 37466 571428 . [’
[T L]
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