The Nuclear and Chiral Transition in the Strong Coupling Regime of Lattice QCD

Wolfgang Unger, Bielefeld University

Lattice 2016

University of Southampthon, 29.07.2016

Universität Bielefeld

Deutsche

Forschungsgemeinschaft

Overview

Lattice QCD at strong coupling: dual approach to QCD

Towards higher order gauge corrections

Preliminary results on the nuclear/chiral transition

QCD Phase Diagram and Sign Problem

- Sign problem: no direct RHMC simulations at finite μ
- Complex Langevin: not (yet) ready to address confined phase, also needs to be crosschecked (convergence issue)
- Lefshetz Thimbles: challenging to adapt to SU(3) and 4 dimensions

Sign problem is representation dependent: Dual Representation of QCD

Wolfgang Unger

Lattice QCD at strong coupling

Strong Coupling Partition Function

Dualization for staggered fermions: Mapping onto discrete system:

[Rossi & Wolff, 1984], [Karsch & Mütter, 1989]

$$Z_{F}(m_{q},\mu) = \sum_{\{k,n,\ell\}} \underbrace{\prod_{b=(x,\mu)} \frac{(N_{c}-k_{b})!}{N_{c}!k_{b}!}}_{\text{meson hoppings } M_{x}M_{y}} \underbrace{\prod_{x} \frac{N_{c}!}{n_{x}!} (2am_{q})^{n_{x}}}_{\text{chiral condensate } \bar{\psi}\psi} \underbrace{\prod_{b} w(\ell,\mu)}_{\text{baryon hoppings } \bar{B}_{x}B_{y}}$$

$$k_{b} \in \{0,\dots,N_{c}\}, n_{x} \in \{0,\dots,N_{c}\}, \ell_{b} \in \{0,\pm1\}, \qquad \text{QCD: } N_{c} = 3$$

• Grassmann constraint:

$$n_{x} + \sum_{\hat{\mu}=\pm 0,\ldots\pm \hat{d}} \left(k_{\hat{\mu}}(x) + \frac{N_{c}}{2} |\ell_{\hat{\mu}}(x)| \right) = N_{c}$$

- weight $w(\ell, \mu)$ and sign $\sigma(\ell) \in \{-1, +1\}$ for oriented baryonic loop ℓ depends on loop geometry
- next talk by Jangho Kim: finite m_q

Wolfgang Unger

Strong Coupling Partition Function

Dualization for staggered fermions: Mapping onto discrete system:

[Rossi & Wolff, 1984], [Karsch & Mütter, 1989]

$$Z_{F}(m_{q},\mu) = \sum_{\{k,n,\ell\}} \underbrace{\prod_{b=(x,\mu)} (\underline{N_{c} - k_{b}})!}_{\text{meson hoppings } M_{x}M_{y}} \underbrace{\prod_{x} \underbrace{N_{c}!}_{p_{x}!} (2am_{q})^{n_{x}}}_{\text{chiral condensate } \bar{\psi}\psi} \underbrace{\prod_{\psi} w(\ell,\mu)}_{p_{x}} w(\ell,\mu)$$

$$k_{b} \in \{0, \dots, N_{c}\}, n_{x} \in \{0, \dots, N_{c}\}, \ell_{b} \in \{0, \pm 1\}, \qquad \text{QCD: } N_{c} = 3$$

Grassmann constraint:

$$\sum_{\hat{\mu}=\pm \hat{0},\ldots\pm \hat{d}} \left(k_{\hat{\mu}}(x) + \frac{N_{\rm c}}{2} |\ell_{\hat{\mu}}(x)| \right) = N_{\rm c}$$

- weight w(ℓ, μ) and sign σ(ℓ) ∈ {−1, +1} for oriented baryonic loop ℓ depends on loop geometry
- this talk: consider chiral limit

Wolfgang Unger

Strong Coupling Partition Function

Dualization for staggered fermions: Mapping onto discrete system:

[Rossi & Wolff, 1984], [Karsch & Mütter, 1989]

$$Z_{F}(m_{q},\mu) = \sum_{\{k,n,\ell\}} \underbrace{\prod_{b=(x,\mu)} (\underline{N_{c} - k_{b}})!}_{\text{meson hoppings } M_{x}M_{y}} \underbrace{\prod_{x} \underbrace{N_{c}!}_{rx!} (2am_{q})^{n_{x}}}_{\text{chiral condensate } \bar{\psi}\psi} \underbrace{\prod_{b} w(\ell,\mu)}_{\text{baryon hoppings } \bar{B}_{x}B_{y}}$$

$$k_{b} \in \{0, \dots, N_{c}\}, n_{x} \in \{0, \dots, N_{c}\}, \ell_{b} \in \{0, \pm 1\}, \qquad \text{QCD: } N_{c} = 3$$

- Worm algorithm [Prokof'ev & Svistunov 2001]: sampling 2-monomer sector (for U(3): [Adams & Chandrasekharan, 2003])
- SU(3): Worm both in mesonic and baryonic sector

Wolfgang Unger

The Phase Diagram in the Strong Coupling Limit

Comparison of phase boundaries (T_c, μ_c) for massless quarks [de Forcrand & U. (2011)]:

- Similar to standard scenario of continuum QCD
- However, nuclear and chiral transition coincide at $\beta = 0$

Wolfgang Unger

[Stephanov et al. PRL 81 (1998)]

Relation Between Chiral and Nuclear Transition at $\beta = 0$

Chiral Transition at Strong Coupling:

- chiral symmetry: $U(1)_{55}$: $\psi(x) \mapsto e^{i\epsilon(x)\theta_{55}}\psi(x)$, $\epsilon(x) = (-1)^{x_1+x_2+x_3+x_4}$ is spontaneously broken at low temperatures/densities
- chiral transition: spatial dimers vanish, at small μ : 2nd order with O(2) exponents

Nuclear Transition (below TCP):

- baryon crystal forms (Pauli saturation)
- ullet coincides with chiral transition: $\left< ar{\psi} \psi \right>$ vanishes as baryonic crystal forms

Wolfgang Unger

Polyakov Loop, Baryon Density and Plaquettes

8

Sign Problem in Dual Representation (Strong Coupling)

• average sign:
$$\langle {
m sign}
angle \simeq e^{-rac{V}{T}\Delta_f}$$

- ullet volumes $32^3 imes {\it N}_{ au}$ can be easily simulated at tricritical point
- sign problem more severe at low temperatures

Wolfgang Unger

Including the gauge corrections

• QCD Partition function via strong coupling expansion in β :

$$Z_{QCD} = \int d\psi dar{\psi} dU \mathrm{e}^{S_G + S_F} = \int d\psi dar{\psi} Z_F \left\langle \mathrm{e}^{S_G}
ight
angle_{Z_F}$$

$$\langle O \rangle_{Z_F} = rac{1}{Z_F} \int dU O e^{-S_F}, \qquad Z_F = \int dU e^{-S_F} = \prod_{l=(x,\mu)} z(x,\mu)$$

• expand gauge action to some order in β :

$$\left\langle e^{S_G} \right\rangle_{Z_F} \simeq 1 + \left\langle S_G \right\rangle_{Z_F} + \mathcal{O}(\beta^2) = 1 + \frac{\beta}{2N_c} \sum_P \left\langle \operatorname{tr}[U_P + U_P^{\dagger}] \right\rangle_{Z_F} + \mathcal{O}(\beta^2)$$

 \rightarrow additional color singlet link states

Link Integrations for $\mathcal{O}(\beta)$ diagrams

One-Link integrals for links on the edge of an excited plaquette:

[Azakov & Aliev, Physica Scripta 38 (1988)]

$$J_{ij} = \sum_{k=1}^{N_c} \underbrace{\frac{(N_c - k)!}{N_c!(k-1)!} (M_{\chi} M_{\varphi})^{k-1} \bar{\chi}_j \varphi_i}_{D_k = mesons + \bar{q}g} - \underbrace{\frac{1}{N_c!(N_c - 1)!} \epsilon_{ii_1i_2} \epsilon_{jj_1j_2} \bar{\varphi}_{i_1} \bar{\varphi}_{i_2} \chi_{j_1} \chi_{j_2}}_{B_1 = qqg} - \underbrace{\frac{1}{N_c} \bar{B}_{\varphi} B_{\chi} \bar{\chi}_j \varphi_i}_{B_2 = meson + \bar{q}gg}$$

- determine plaquette link product $P = tr[J_{ik}J_{kl}J_{lm}J_{mi}]$
- result can be consistently re-expressed via link weights: $w(D_k) = \frac{(N_c - k)!}{N_c!(k-1)!}$, $w(B_1) = \frac{1}{N_c!(N_c-1)!}$, $w(B_2) = \frac{(N_c-1)!}{N_c!}$ and site weights: $v_1 = N_c!$, $v_2 = (N_c - 1)!$, $v_3 = 1$

• Grassman constraint on sites touching a plaquette altered $N_{
m c}
ightarrow N_{
m c} + 1$

Wolfgang Unger

۸1

Gauge corrections to the phase diagram at strong coupling State of the art: $O(\beta)$ corrections for SU(3)

[Langelage, de Forcrand, Philipsen & U., PRL 113 (2014)]

Questions we want to address:

- Do the nuclear and chiral transition split?
- Does the tricritical point move to smaller or larger μ as β is increased?

Wolfgang Unger

First step: obtain higher order gauge integrals: $\mathcal{O}(\beta^{r+s})$

• need to determine one-link integrals, with quark matrices $\mathcal{M}_{ij} = \sum_{i=1}^{N_{\rm f}} \psi_i^f(x) \bar{\psi}_j^f(y)$:

$$\mathcal{J}_{(i,j)_{1:r}(k,l)_{1:s}}^{r,s} = \int\limits_{SU(3)} dU \underbrace{e^{\operatorname{tr}[U\mathcal{M}^{\dagger} + \mathcal{M}U^{\dagger}]}}_{\text{from quark action}} \underbrace{U_{i_{1}j_{1}} \dots U_{i_{r}j_{r}}(U^{\dagger})_{k_{1}l_{1}} \dots (U^{\dagger})_{k_{s}l_{s}}}_{\text{from gluon action}}.$$

- in the strong coupling limit, link integration for $\mathcal{J}^{0,0}$ factorizes!
- β > 0: tensorial structure, but still true that gauge integrals can be decomposed into linear combinations of invariants
- strategy: expand exponential of fermion action $\mathcal{J}_{(i,j)_{1:r}(k,l)_{1:s}}^{r;s} = \sum_{\kappa_1,\kappa_2} \mathcal{K}_{(i,j)_{1:r}(k,l)_{1:s}}^{\kappa_1,r;\kappa_2,s}$

$$\mathcal{K}_{(i,j)_{1:r}(k,l)_{1:s}}^{\kappa_{1},r;\kappa_{2},s} = \frac{1}{\kappa_{1}!\kappa_{2}!} \sum_{\{i_{a},j_{a},k_{b},l_{b}\}} \left(\prod_{a=1}^{\kappa_{1}} (\mathcal{M}^{\dagger})_{i_{a}j_{a}} \right) \left(\prod_{b=1}^{\kappa_{2}} \mathcal{M}_{k_{b}l_{b}} \right) \mathcal{I}_{(i,j)_{1:\kappa_{1}+r}(k,l)_{1:\kappa_{2}+s}}^{\kappa_{1}+r;\kappa_{2}+s}$$

- κ_1 quark hoppings, κ_2 anti-quark hoppings: $|\kappa_1 \kappa_2 + r s| \in \{0, N_c, 2N_c, \ldots\}$
- o color and flavor structure intimately linked!
- Integrals $\mathcal{I}_{(i,j)_{1:a}(k,l)_{1:b}}^{a;b} = \int_{SU(3)} dU U_{i_1j_1} \dots U_{i_aj_a}(U^{\dagger})_{k_1l_1} \dots (U^{\dagger})_{k_bl_b}$ are known, recursive [M. Creutz, 1980], or expressed by Young projectors [J. Myers, 2014]: Wolfgang Unger Nuclear and Chiral Transition in Strong Coupling Regime Southampton, 29.07.2016

13

Gauge Integrals and Characters of S_n

At strong coupling, general result for any number of flavors $N_{\rm f}$:

- χ_{τ}^{λ} is character of symmetric group S_n , D_{λ} is dimension of SU(N) representation λ , c_{τ} is degeneracy of cycle structure
- λ encodes $N_{\rm c}$ -dependence, τ for $N_{\rm f}$ -dependence, e.g.

$$\mathcal{K}_{0}^{3;3} = \frac{1}{6} \frac{1}{N_{\rm c}(N_{\rm c}^2 - 1)(N_{\rm c}^2 - 4)} \Big[(N_{\rm c}^2 - 2) {\rm Tr}[M_{xy}]^3 + 3N_{\rm c} {\rm Tr}[M_{xy}] {\rm Tr}[(M_{xy})^2] + 4 {\rm Tr}[(M_{xy})^3] \Big]$$

• Generalization for higher order gauge corrections possible, e.g.

$$\begin{split} \mathcal{K}_{i_{1}j_{1},i_{2}j_{2}}^{1,2,3,0} &= \frac{1}{N_{c}(N_{c}^{2}-1)(N_{c}^{2}-4)} \Big[(N_{c}^{2}+N_{c}-2) \mathrm{Tr}[Q^{i_{1}j_{1}}] \mathrm{Tr}[Q^{i_{2}j_{2}}] \mathrm{Tr}[M_{xy}] \\ &+ N_{c} \mathrm{Tr}[Q^{i_{1}j_{1}}Q^{i_{2}j_{2}}] \mathrm{Tr}[M_{xy}] + N_{c} \mathrm{Tr}[M_{xy}Q^{i_{1}j_{1}}] \mathrm{Tr}[Q_{i_{2}j_{2}}] + 4 \mathrm{Tr}[M_{xy}Q^{i_{1}j_{1}}Q^{i_{2}j_{2}}] \Big] \end{split}$$

Wolfgang Unger

Plaquette and Flux Variables

New interpretation of dual representation:

- at strong coupling limit: dimers=meson hoppings, 3-fluxes=baryons
- away from strong coupling limit: dimers = color singlets (=U(3) sector), 3-fluxes = color triplets
- in principe: also 6-flux, 9-flux, ... sectors, but neglected here

Plaquette occupation numbers at plaquette coorinate P:

 equivalence classes of difference of fundamental plaquettes Tr[U_P] and anti-fundamental plaquettes Tr[U⁺_P] from gauge action:

$$n_P = n_f(P) - n_a(P) \implies \beta \mapsto U(3)$$
 sectors within $u(\beta)$

• plaquette fluxes induce links fluxes f_b and defines flux sites f_x :

Second step: Grassmann integration

Recall: gauge integration before Grassmann integration (no fermion determinant)

- free color indices need to be **contracted** at each site (for given ensemble of plaquettes)
- $\bullet\,$ in general, gives rise to tensor networks/vertex model \rightarrow (too) difficult!

Simplification in the U(3) sector:

- plaqutte occupations $n_p, n_{p'} \in \mathbb{Z}$ can only differ by ± 1 if p, p' adjacent
- plaqutte occupations $n_p, n_{p'} \in \mathbb{Z}$ cannot share a site if they don't share a link

• Does not apply to the additional SU(3) contributions: so far restricted to first non-trivial contribution (3-flux sector)

Wolfgang Unger

MDP+P partition function:

$$Z_{F}(m_{q},\mu) = \sum_{\{k,n,\ell,n_{p}\}} \prod_{\substack{b=(x,\mu) \\ \text{singlet hoppings } M_{X}M_{Y}}} \underbrace{\prod_{x} \frac{(N_{c} - k_{b})!}{N_{c}!(k_{b} - |f_{b}|)!}}_{\text{chiral condensate } \bar{\psi}\psi} \underbrace{\prod_{x} \frac{1}{n_{x}!} (2am_{q})^{n_{X}}}_{\text{triplet hoppings } \bar{B}_{X}B_{Y}} \underbrace{\prod_{p} \frac{1}{|n_{P}|!} \left(\frac{\beta}{2N_{c}}\right)^{|n_{P}|}}_{\text{gluon propagation}}$$
$$k_{b} \in \{0, \dots, N_{c}\}, n_{X} \in \{0, \dots, N_{c}\}, \ell_{b} \in \{0, \pm 1\}, f_{b} = \partial n_{p}, f_{X} = \frac{1}{2} \sum_{b} f_{b}$$

- color constraint: $n_{x} + \sum_{\hat{\mu} = \pm \hat{0}, \dots \pm \hat{d}} \left(k_{\hat{\mu}}(x) + \frac{N_{c}}{2} |\ell_{\hat{\mu}}(x)| \right) = N_{c} + f_{x}$
- 3-flux weight involves additional site weights v_i and link weights:

$$w(B_3) = \frac{1}{N_c!(N_c-1)!(N_c-2)!}, \quad w(B_4) = \frac{(N_c-1)!(N_c-2)!}{N_c!}$$

• sign: combine gauge flux f_b with triplet flux ℓ_b to identify fermionic loops $\tilde{\ell}$:

$$\sigma(C) = (-1)^{L(C)+W(C)+N_{-}(C)} \prod_{\tilde{\ell}} \eta_{\mu}(x)$$

QCD lattice partition function correct up to $\mathcal{O}(\beta^3)$

Wolfgang Unger

MDP+P Ensembles (2-dim for visualization)

 $\beta = 1.0$, $\mu = 0.5$ (liquid phase)

MDP ensemble:

Wolfgang Unger

Nuclear and Chiral Transition at T = 0 - ongoing analysis

19

Nuclear and Chiral Transition at T = 0 - ongoing analysis

Nuclear and Chiral Transition at T = 0 - ongoing analysis

aµ Southampton, 29.07.2016 19

Conclusions

Results:

- all gauge integrals needed for $\mathcal{O}(\beta^3)$ and related to group characters
- Grassmann integration simplifies in U(3) sector
- sign problem mild enough to go beyond $\beta>1$, but hard at $\mathcal{T}=0$ (even at $\beta=0$)
- simulations with $\mathcal{O}(\beta)^3$ corrections included but not conclusive yet concerning nuclear vs. chiral transition (weak dependence on β)
- split between chiral and nuclear transition might be very small in nature

Goals:

- $\bullet~$ improve plaquette algorithm \rightarrow incorporate character expansion
- generalize plaquette algorithm to non-trivial anisotropy $a/a_t = f(\gamma, \beta_s/\beta_t)$ to study various $T (\rightarrow \text{talk by H\'elvio Vairinhos: } a/a_t = f(\gamma) \text{ at } \beta = 0)$
- surpass the roughening transition at $\beta \simeq$ 5.9: sampling of all orders needed
- other dualizations? (\rightarrow talk by Carla Marchis)

Backup: Connection Between Strong Coupling and Continuum Limit?

One of several **possible scenarios** for the extension to the continuum:

- back plane: strong coupling phase diagram ($\beta = 0$), $N_{\rm f} = 1$
- front plane: continuum phase diagram (β = ∞, a = 0)
- due to fermion doubling, corresponds to $N_{\rm f} = 4$ in continuum (no rooting)

Wolfgang Unger

Backup: Young Tableaux - Color Structure

So, what are the C_{λ}^{τ} (and for $\mathcal{O}(\beta)$, $\mathcal{O}(\beta^2)$: $C_{\lambda}^{\tau,\rho_1}$, $C_{\lambda}^{\tau,\rho_1,\rho_2}$, etc) ?

• answer: related to irreducible representations of the symmetric group S_n with $n = \kappa_1 + r = \kappa_2 + s$

Young Tableaux $\lambda = (\lambda_1, \dots, \lambda_k)$:

- Standard Young tableaux correspond to irreps of S_n with dimension $d_{\lambda} = \frac{n!}{H_{\lambda}}$ with Hook lengths H_{λ}
- used to determine dimension $D_{\lambda} = \frac{F_{\lambda}}{H_{\lambda}}$ of irreps of SU($N_{\rm c}$)

Backup: Young Tableaux - Flavor Structure

So, what are the C_{λ}^{τ} (and for $\mathcal{O}(\beta)$, $\mathcal{O}(\beta^2)$: $C_{\lambda}^{\tau,\rho_1}$, $C_{\lambda}^{\tau,\rho_1,\rho_2}$, etc) ?

• answer: related to irreducible representations of the symmetric group S_n with $n = \kappa_1 + r = \kappa_2 + s$

--(4)

--(21) --(22) --(211) --(1111)

$$\begin{array}{c} \begin{array}{c} 1 \\ (-1, 1) \\$$

n n n

Backup: Table of Characters and Invariants

τ	λ :	(1, 1, 1, 1)	(2, 1, 1)	(2, 2)	(3, 1)	(4)	Sum
(4,0,0,0)		1	3	2	3	1	10
(2,1,0,0)		1	1	0	-1	-1	0
(0,2,0,0)		1	-1	2	-1	1	2
(1,0,1,0)		1	0	-1	0	1	1
(0,0,0,1)		1	-1	0	1	-1	0
Sum		5	2	3	2	1	

Table: Characters χ^{τ}_{λ} for n = 4

τ	λ :	(1, 1, 1, 1)	(2, 1, 1)	(2,2)	(3, 1)	(4)	Sum
(4,0,0,0)		1	9	4	9	1	24
(2,1,0,0)		6	18	0	-18	-6	0
(0,2,0,0)		3	-9	12	-9	3	0
(1,0,1,0)		8	0	-16	0	8	0
(0,0,0,1)		6	-18	0	18	-6	0
Sum		24	0	0	0	0	

Table: Invariants C_{λ}^{τ} for n = 4

Backup: Relationship to the Character Expansion

• Define Bessel Determinants:

$$D_n^{(3,e)} = \begin{vmatrix} I_n(x) & I_{n+1}(x) & I_{n+2}(x) \\ I_{n-1}(x) & I_n(x) & I_{n+1}(x) \\ I_{n-2}(x) & I_{n-1}(x) & I_n(x) \end{vmatrix}, D_n^{(3,f)} = \begin{vmatrix} I_{n+1}(x) & I_{n+2}(x) & I_{n+3}(x) \\ I_{n-1}(x) & I_n(x) & I_{n+1}(x) \\ I_{n-2}(x) & I_{n-1}(x) & I_n(x) \end{vmatrix}$$

- fundamental character in $x = \frac{1}{g^2} = \frac{\beta}{2N_c}$: for U(3): $u(\beta) = \frac{D_0^{(3,f)}(2x)}{D_0^{(3,e)}(2x)} = \frac{\frac{1}{0!1!}x + \frac{2}{1!2!}x^3 + \frac{6}{2!3!}x^5 + \frac{23}{3!4!}x^7 + \frac{103}{4!5!}x^9 + \dots}{1 + \frac{1}{1!2}x^2 + \frac{2}{2!2}x^4 + \frac{6}{3!2}x^6 + \frac{23}{4!2}x^8 + \frac{103}{5!2}x^{10} + \dots}{\frac{1}{1!2!}x^2 + \frac{2}{2!2!}x^2 + \frac{6}{3!2!}x^2 + \frac{2}{2!2}x^3 + \frac{5}{8!}x^4 + \frac{2\times6!}{24!}x^5 + \frac{77}{240}x^6 + \frac{5\times23+24}{720}x^7 + \dots}{\frac{1}{1!2!}x^2 + \frac{1}{2!2!}x^2 + \frac{2}{1!2!}x^3 + \frac{5}{8!}x^4 + \frac{2\times6!}{24!}x^5 + \frac{27}{240}x^6 + \frac{5\times23+24}{720}x^7 + \dots}{\frac{1}{1!2!}x^2 + \frac{1}{1!2!}x^2 + \frac{1}{1!2!}x^3 + \frac{2}{2!2!}x^4 + \frac{1}{4!}x^5 + \frac{2\times6!}{72!}x^6 + \frac{23}{4!2!}x^8 + \dots}$
- character expansion recovered, but not limited to Wilson loops!

Wolfgang Unger