Continuing the Saga of Fluffy Mirror Fermions

Dorota M Grabowska

work with David B. Kaplan
Phys.Rev.Lett. 116 211602 (2016) [arXiv:1511.03649]
arXiv:1608.xxxx

Lattice Regularization of Chiral Gauge Theories

Dorota M Grabowska

work with David B. Kaplan
Phys.Rev.Lett. 116 211602 (2016) [arXiv:1511.03649]
arXiv:1608.xxxx

Motivation: Well-Defined Chiral Gauge Theories

Big Question 1: Basic ingredients necessary for self-consistent chiral gauge theories (χGT)

- Perturbative regulator provides controlled theoretical description of perturbative phenomena
- Electroweak experiments probe weakly coupled χGT
- Currently no experimental access to nonperturbative behavior

Big Question 2: Properties of strongly coupled χGT

Lattice methods allow for numerical simulation of nonperturbative systems

To address these questions, must find a lattice regulator

Requirements for Lattice Regulated xGT

- Complex fermion representation with decoupling of doublers
- Road to failure for anomalous fermion representations
 - Continuum: Only anomaly-free χGT are well-defined
 - Lattice: Symmetries cannot be anomalous
- Gauge invariant in the continuum limit
- Unambiguous definition of fermion determinant phase
 - Continuum: Kinetic operator for LH Weyl fermion maps between two different spaces
 - Ill-defined eigenvalue problem

Domain Wall Fermions

- Light modes localized on domain wall
 - Exactly massless in limit of infinite extra dimension

*Kaplan '92

Domain Wall Fermions

- Light modes localized on domain wall
 - Exactly massless in limit of infinite extra dimension
- Constant s-independent gauge field A(x) throughout the bulk
- U(I)_A anomaly due to Callan-Harvey Mechanism: incomplete decoupling of heavy bulk modes (Callan and Harvey, 84)
- Gives rise to solution of Ginsparg-Wilson equation

*Kaplan '92

Ginsparg-Wilson Equation

Derived by spin-blocking continuum theory

$$\gamma_5 D^{-1} + D^{-1} \gamma_5 = a \gamma_5$$

- Operator that satisfies Ginsparg-Wilson equation
 - Preserves all chiral symmetries except U(I)_A
 - Violates U(I)_A by amount required to reproduce continuum anomaly

Ginsparg & Wilson '85

Ginsparg-Wilson Equation

Derived by spin-blocking continuum theory

$$\gamma_5 D^{-1} + D^{-1} \gamma_5 = a \gamma_5$$

- Operator that satisfies Ginsparg-Wilson equation
 - Preserves all chiral symmetries except U(I)_A
 - Violates U(I)_A by amount required to reproduce continuum anomaly
- DWF on compact extra dimension in limit of infinite wall separation give rise to overlap operator (Narayanan & Neuberger '94, '95; Neuberger, '98)

$$D_{NN} = \frac{1 + \gamma_5 \epsilon(H)}{2}$$

$$H = \gamma_5 (D_w - m)$$

$$\epsilon(H) = \frac{H}{\sqrt{H^{\dagger} H}}$$

Ginsparg & Wilson '85

Proposal for Lattice Regulated χGT

- LH and RH modes have different gauge field interactions if gauge field is localized around one wall
- Previous attempt: Waveguide Model
 - Gauge field only nonzero around one wall
 - Gauge invariance broken at interface
 - Introduction of charged scalars at interface leads to Dirac spectrum (Golterman Jansen and Vink '93)

Proposal for Lattice Regulated χGT

- Utilize Domain Wall Construction for localization of light modes
- Gauge field obeys Gradient Flow equation in extra dimension

$$\partial_s \bar{A}_{\mu}(x,s) = \frac{\epsilon(s)}{\Lambda} D_{\mu} \bar{F}_{\mu\nu}$$
 BC: $\bar{A}_{\mu}(x,0) = A_{\mu}(x)$

- Damps out high momentum modes in gauge invariant way
- Localizes gauge field around one wall

*DMG & Kaplan '15

Example: 2d/3d QED

2d Domain Wall Surface

 Write field in terms of gauge and physical degree of freedom

$$ar{A}_{\mu} = \partial_{\mu}\bar{\omega} + \epsilon_{\mu\nu}\partial_{\nu}\bar{\lambda}$$

Each DoF has its own flow equation

$$\partial_{s}\bar{\lambda} = \Box\bar{\lambda} \qquad \partial_{s}\bar{\omega} = 0$$

Example: 2d/3d QED

2d Domain Wall Surface

 Write field in terms of gauge and physical degree of freedom

$$\bar{A}_{\mu} = \partial_{\mu}\bar{\omega} + \epsilon_{\mu\nu}\partial_{\nu}\bar{\lambda}$$

Each DoF has its own flow equation

$$\partial_s \bar{\lambda} = \Box \bar{\lambda} \qquad \partial_s \bar{\omega} = 0$$

 Flow only damps out high momentum modes of physical DoF

$$\bar{\lambda}(p,s) = e^{-p^2s/\Lambda}\lambda(p)$$

Anomalies and Callan-Harvey Mechanism

- Integrating out bulk fermions generates a Chern-Simons term
- In 3 dimensions, the Chern Simons action is

$$S_3^{\text{bulk}} = c_3 \frac{\Lambda}{|\Lambda|} \int \left(\epsilon(s) - 1 \right) \text{Tr} \left(\bar{F} \bar{A} - \frac{1}{3} \bar{A}^3 \right)$$

Anomalies and Callan-Harvey Mechanism

- Integrating out bulk fermions generates a Chern-Simons term
- In 3 dimensions, the Chern Simons action is

Anomalies and Callan-Harvey Mechanism

- Integrating out bulk fermions generates a Chern-Simons term
- In 3 dimensions, the Chern Simons action is

This approximation is only valid far away from domain wall

Anomaly Cancellation and Nonlocality

• DWF with flowed gauge fields gives rise to a nonlocal 2d theory

$$S_3^{\text{bulk}} = 2e^2c_3\frac{\Lambda}{|\Lambda|}\int dx^2dy^2\left(\frac{\partial_\mu\partial_\alpha}{\Box}A_\alpha(x)\right)\Gamma(x-y)\left(\frac{\partial_\mu\partial_\beta}{\Box}\epsilon_{\beta\gamma}A_\gamma(y)\right)$$

For multiple fields, Chern Simons prefactor is

$$\sum_{i} e_{i}^{2} \frac{\Lambda_{i}}{|\Lambda_{i}|}$$

The theory is not local if this prefactor does not vanishes

Anomaly Cancellation and Nonlocality

DWF with flowed gauge fields gives rise to a nonlocal 2d theory

$$S_3^{\text{bulk}} = 2e^2c_3\frac{\Lambda}{|\Lambda|}\int dx^2dy^2\left(\frac{\partial_\mu\partial_\alpha}{\Box}A_\alpha(x)\right)\Gamma(x-y)\left(\frac{\partial_\mu\partial_\beta}{\Box}\epsilon_{\beta\gamma}A_\gamma(y)\right)$$

For multiple fields, Chern Simons prefactor is

$$\sum_{i} e_{i}^{2} \frac{\Lambda_{i}}{|\Lambda_{i}|}$$
 Fermion Chirality

The theory is not local if this prefactor does not vanishes

Anomaly Cancellation and Nonlocality

DWF with flowed gauge fields gives rise to a nonlocal 2d theory

$$S_3^{\text{bulk}} = 2e^2c_3\frac{\Lambda}{|\Lambda|}\int dx^2dy^2\left(\frac{\partial_\mu\partial_\alpha}{\Box}A_\alpha(x)\right)\Gamma(x-y)\left(\frac{\partial_\mu\partial_\beta}{\Box}\epsilon_{\beta\gamma}A_\gamma(y)\right)$$

For multiple fields, Chern Simons prefactor is

$$\sum_{i} e_{i}^{2} \frac{\Lambda_{i}}{|\Lambda_{i}|}$$
Fermion Chirality

The theory is not local if this prefactor does not vanishes

This is exactly equivalent to the requirement that the chiral fermions be in an anomaly free representation

Infinite Wall Separation

- Exactly massless modes require infinite extra dimension
- Wick rotation of theory at finite L is ill-defined due to incomplete decoupling of mirror fermions
 - RH mode sees gauge field with $e^{-p^2L/\Lambda}$ form factor
 - Wick rotation changes sign of p²
- Well-defined chiral gauge theory requires working at infinite L

Infinite Wall Separation

- Working at infinite L_s allows for simplified picture
 - All flow is localized to a very narrow region between walls
- Looks similar to waveguide model, but theory is gauge-invariant at interface between A and A_{\star}
 - Do not expect new domain wall to appear

Chiral Overlap Operator

- In limit of infinite wall separation, theory is amenable to an overlap treatment
- The chiral overlap operator is

$$\mathcal{D}_{\chi} = 1 + \gamma_5 \left[1 - (1 - \epsilon_{\star}) \frac{1}{\epsilon \epsilon_{\star} + 1} (1 - \epsilon) \right]$$

$$\epsilon = \epsilon(H)$$
 $\epsilon_{\star} = \epsilon(H_{\star})$

Chiral Overlap Operator

- Chiral overlap operator has several key properties
 - Satisfies Ginsparg-Wilson equation
 - Correct continuum limit: $\lim_{a\to 0} D_{\chi} = D^{\mu} \gamma_{\mu} P_L + D_{\star}^{\mu} \gamma_{\mu} P_R$
 - No phase ambiguity

Summary

- New proposal for lattice regularization of chiral gauge theories
 - Combines domain wall fermions and gradient flow
 - Road to failure for anomalous theories is nonlocality
- In the limit of infinite extra dimensions, the fermion determinant is described by a chiral version of the Overlap operator

$$\mathcal{D}_{\chi} = 1 + \gamma_5 \left[1 - (1 - \epsilon_{\star}) \frac{1}{\epsilon \epsilon_{\star} + 1} (1 - \epsilon) \right]$$

- Operator satisfies Ginsparg-Wilson relation
- Determinant of operator has unambiguous phase and correct continuum limit for a chiral theory