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RBC/UKQCD 2+1 Flavor DWF Ensembles

m_ (unitary, degenerate quarks) and a2 for DWF ensembles
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Balancing m_.. and Topological Tunneling for DWF

The propagation of light modes between the five-dimensional boundaries is controlled
by the eigenvalues of the transfer matrix, Hp

1
2+ (b;,—c¢:) Dw (M)

Hy= 7’5DW(M)

Zeros of D (M) produce modes not bound to the five-dimensional boundaries

These zeros occur when the gauge fields are changing topology (picture from PRD 77
(2008) 014509)

Refer to this type of localized fluctuation in the gauge fields as a dislocation.

For a given L, dislocations increase the size of the residual mass, m_.
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Choices of Action

For 1/ain range 1.5 - 2.5 GeV, Iwasaki gauge action suppresses dislocations suf-
ficiently with 2+1 flavors of fermions to allow physical light quark masses to be
reached.

* 1/a=1.73 GeV: L, =24 for MDWF (b+c=2) gives m__ =045 m,
* 1/a=2.31GeV: L, =12 for MDWF (b+c=2) gives m__ = 0.32 m_ 4

For stronger couplings, add the Dislocation Suppressing Determinant Ratio (DSDR)
to suppress topological tunneling
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* 1/a=1.35GeV: L, =12 for MDWF (b+c=32/12) gives m__,=0.95 m 4



e Use SU(2) ChPT to make small extrapolation (arXiv:1411.7017).

Essentially Physical Quark Mass Ensembles

* Inputs: m_, mg and mg. Outputs: f_and f,. Overweight physical pt. ensembles

Quantity | Physical Value | Ens. 10 Value | Deviation | Ens. 11 Value Deviation
mn/mK 0.2723 0.2790 2.4% 0.2742 0.7%
mn/mQ 0.0807 0.0830 2.8% 0.0822 1.9%
mK/mQ 0.2964 0.2974 0.3% 0.2998 1.2%
RBC/UKQCD f_ RBC/UKQCD f,

2000 quench 137.0(11.0) =, 2000 quench  156.0( 8.0) —8—

2007 127.0( 4.0) —B— 2007 157.0( 5.0) —5—

2008 124.1(7.8) —B— 2008 149.6(7.3) —B—

2010 124.0(5.4) —F— 2010 149.0( 4.5) —a—

2014 130.2( 0.9) =] 2014 155.5( 0.8) =

2013 FLAG  130.2(1.4) =1 2013 FLAG  156.3(0.9) =|
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Choices of Action for 1/a> 3 GeV

Topological tunneling rate falls dramatically with lattice spacing

*  Switching from Iwasaki to Wilson gauge action helps

*  How to do more?

Do the opposite of DSDR term: Dislocation Enhancing Determinant (DED)

Try DSDR with €; > ¢,. Shiftin £ (to larger values) suppresses tunneling almost as
much as inverse determinant improves it.

Choose a rational function of Dy,(M) which falls off faster for larger eigenvalues.

Still effects dislocations, but has less effect on physical modes and should reduce the
B shift. (Greg McGlynn)

*  Normal pseudofermion action in RHMC: S =¢'R,(B)R,;(F)’R,(B) ¢
* For DWF, choose: R,(x) ~2" Ri(z) ~ 2"

* For DED term, choose: R;(z) =1, R,(z)=1—-—5+—+

,I'+b1 .CE"‘bg
* This gives: det[Rb(M;Techrec(_Mi’_)))2]:H<1_ Aﬁb i /Hcfb )2
A ! ’

*  For large values of Ay, this falls like 1 + O (A"



Quenched Test of DED with 1/a =4.55 GeV



2+1+1 Flavor DWF + DED with 1/a = 3 GeV

Greg McGlynn, Ph.D. Thesis, April 2016
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2+1+1 Flavor DWF + DED + zMobius Molecular Dynammics

e zMobius: a variant of Mobius DWF with complex coefficients (Izubuchi, et. al.)
allowing reduced L

* Here we find L, = 14 zMDWEF is a good approximation to L, = 32 MDWF

* CG 1teration counts rise because preconditioning less effective.

* McGlynn implemented an idea of Brower and Orginos to do MD at reduced L

Use zMDWTF here to This 1s a small correction. A 323 test
have an accurate, small Not necessary to include ensemble 1s
L, approximation to in MD, only include in 2x faster with
original determinant accept/reject step zMobius
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2+1 Flavor Iwasaki + DSDR (M)DWF ensembles

m5 (unitary, degenerate quarks) and a2 for DWF ensembles
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Original DSDR ensemble had 1/a=1.37(1) GeV, m_= 170 MeV and V = (4.7 fm)3

*  Another ensemble, with G-parity boundary conditions, generated for K — 7ttt ma-
trix elements calculations with m_ = 170 MeV

For HotQCD thermodynamics study of the QCD phase transition with MDWF
quarks, two T=0 DSDR ensembles were generated at 1/a = 0.98(4) and 2.02(1) GeV
(PRL 113 (2014) no.8 082001).

Global fits show small O(a?) errors for MDWF ensembles, even at 1/a = 1 GeV.

12



SU(2) ChPT Fits to mpg and fpg

We can simultaneously fit lattice data for different lattice spacings, actions and vol-
umes using expansions of the form (SU(2) NLO example):

e ¢ ¢ 16 2 2 2 e 1 e X
(my)* = 0 + x5 {p((ZLé)—Lg ))+2(2Lé)—L4(12)))X1 R TTLd 1ogA—%}

8 € €
fi —f[1+cf<ae>2]+f-{—<2L§2>+L§2>>xf— = 10g%z}
with
Z¢ Blm¢
R¢ (a%)?

(¢

X =

At NNLO order, using codes from Bijnens and collaborators, we fit to

X (my, L,a%) =~ X, ( 1+ XNLO(mq) + XNNLO(mq) + A§Lo(mqa L) + cxa’ )

NNLO Continuum PQChPT NLO FV corrections Lattice spacing

For SU(2), we use m_, my and mg, to set the scale.
There are different a corrections to the decay constants for I and ID actions.

Heavy quark ChPT used for light quark extrapolation of kaon.

tol/ 2 and W are also fit using a linear chiral ansatz.
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Scaling Errors for f_and f,

Fits use different O(a?) coefficients for Iwasaki and Iwasaki+DSDR actions

Results for these coefficients from PRD 93 054502 (2016):

NLO (370 MeV cut) | NNLO (450 MeV cut)
Iwasaki f__a? coeff. 0.059(47) GeV? 0.065(45) GeV?
DSDR f,_a? coeff. -0.013(17) GeV? 0.012(16) GeV?
Iwasaki fy a? coeff. 0.049(39) GeV? 0.069(36) GeV?
DSDR fy, a? coeff. -0.005(15) GeV? 0.019(15) GeV?

For 1/a =1 GeV, percent scaling error:

NLO (370 MeV cut) | NNLO (450 MeV cut)
Iwasaki f_ 6+5% 7+ 5%
DSDR f_ -1 2% 1 +2%
Iwasaki fy 5+4% 7 +4%
DSDR fy -1 2% 2+2%

Canonical scaling errors should be (aA&y) ~(330 MeV /980 MeV )'~0.11.

2+1 flavor physical quark mass simulations at strong coupling well behaved.



Scaling Errors For More Observables

* We have preliminary fits with more observables, including the st [=2 scattering

length (David Murphy)

e Show results for SU(2) NNLO fits with pseudoscalar masses below 450 MeV

Iwasaki a2 coefficient DSDR a? coefficient
f 0.070+0.041 0.022+0.017
fie 0.079+0.034 0.030+0.014
ty'/? -0.017+0.041 -0.021+0.020
W, -0.117+0.360 -0.039+0.018
a,” (I=2 pi-pi scattering) -0.15+0.33 -0.04+0.45

15




Fit Quality

Have 3 DSDR ensembles plus the requirement that Iwasaki and DSDR actions have
common continuum limit, so linear fit in a2 has to match 4 conditions.

Deviations between fits and data are almost all below 1%.

Argues against any measureable contribution from higher orders in a.
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1 GeV Ensembles

Evidence presented shows that we have an action that allows strong coupling simula-

tions with 2+1 flavors at physical quark masses

*  Small a2 corrections

* Rapid topological tunneling

*  No execeptional configurations

* Good chiral symmery properties from MDWF

We expect these ensembles will be very useful for

*  Studying finite volume effects for QCD and QCD+QED physics, like g-2
* Developing and testing methods at physical quark masses

*  Measurements requiring large statistics and/or good topological sampling.
We are generating 3 ensembles with 1/a =1 GeV

* 243 physical volume is (4.8 fm)?, m_L=34

* 323 physical volume is (6.4 fm)°, m_L =4.5

* 483 physical volume is (9.6 fm)’, m_L = 6.7
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Topological Charge
1/a ~1Gev DSDR Physical
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Preliminary Measurements on 24° 1 GeV Ensemble

e To date, have measured on 41 configurations. Input quark masses for this ensemble
came from our global chiral fits.

e Using 1/a=0.981 GeV (from global chiral fit) can convert lattice results to physical
units.
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e Previous global fits showed small O(a?) scaling deviations and the close agreement of
f and fi with experiment further supports this.
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Omega Baryon Effective Mass on 243 1 GeV Ensemble

Two sources: Coulomb gauge fixed wall source and 8 smaller Coulomb gauge fixed
wall sources.

Preliminary results from 41 configurations.

Good agreement between the two sources.
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Conclusions

The DSDR term has allowed us to simulate domain wall fermions on coarse lattices.

DSDR Used for K — st (with G-parity boundary conditions) and also for finite
temperature QCD studies with N = 8.

Adding a DED term enhances topological tunneling and we have a large volume,
2+1+1 flavor, 1/a =3 GeV DWF ensemble showing good tunneling.

Global chiral fits have revealed that our Iwasaki+DSDR ensembles have small a2
scaling violations.

We are currently generating 1/a = 1GeV ensembles with physical volumes of
(4.8 fm)3, (6.4 fm)3, and (9.6 fm)°.

These coarse lattices will allow studies of finite volume effects for a variety of
observables.

Physical 2+1 flavor ensembles with size 247 x 64 x 24 useful for high statistics and
exploring techniques.
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