Domain Wall Fermion Simulations with the Exact One-Flavor Algorithm

David Murphy Columbia University

The 34th International Symposium on Lattice Field Theory (Southampton, UK)

July 27th, 2016

Motivation

- Recent advances in algorithms used by RBC/UKQCD have driven down the cost of simulating degenerate light quark pairs:
 - Sextensive tuning of forces via Hasenbusch mass splitting [Phys. Lett. B519 177-182]
 - Shamir DWF → Möbius DWF → zMöbius DWF [Izubuchi et al., Lattice 2015]
 - Reduced L_s approximation during molecular dynamics [proposed by Brower et al., arXiv:1206.5214; implemented by G. McGlynn, Lattice 2015]
 - Mixed precision CG: single precision inner solves, double precision defect correction
- RHMC strange and charm quark determinants are now the most expensive part of our evolution strategy

5800 s	11.6%
18000 s	36.1%
1600 s	3.3%
24200 s	48.5%
170 s	0.3%
50000 s	
	5800 s 18000 s 1600 s 24200 s 170 s 50000 s

Table: Timings for one HMC trajectory of $80^2 \times 96 \times 192 N_f = 2 + 1 + 1$ physical mass $a^{-1} \approx 3 \text{ GeV}$ ensemble on a 12,288-node BG/Q partition [G. McGlynn, Ph.D. thesis]

- These techniques are of limited use for RHMC:
 - Unclear how to restart inner single-precision solver in the context of multishift CG
 - \blacktriangleright Cost of multishift $D^{\dagger}D$ inversions at light quark masses largely negates potential gain from Hasenbusch splitting
- For I = 0 $K \to \pi\pi$ calculations with G-parity boundary conditions $D^{\dagger}D$ describes 4 flavors, and RHMC is needed for light quarks as well [C. Kelly, Thur. @ 15:50]
- **Goal:** Explore the exact one-flavor algorithm as an alternative to RHMC for simulating single quark flavors or degenerate G-parity quark pairs

The Exact One-Flavor Algorithm

- Introduced by TWQCD for efficient one-flavor simulations on GPU clusters
- History:
 - 2009: Introduction [TWQCD, arXiv:0911.5532]
 - > 2014: Detailed derivation [Chen and Chiu, Phys. Lett. B738 55-60]
 - ▶ 2014: Demonstration of ~ 20% overall speed-up in $16^3 \times 32 \times 16 N_f = 2 + 1$ simulation with EOFA vs. RHMC for heavy quark [Chen and Chiu, arXiv:1412.0819]
- Main idea: Use block manipulations in spin space to write

$$\det\left[\frac{D(m_1)}{D(m_2)}\right] = \frac{1}{\det\left(\mathcal{M}_L\right)} \cdot \frac{1}{\det\left(\mathcal{M}_R\right)}$$

with \mathcal{M}_{L} and \mathcal{M}_{R} Hermitian and positive-definite

• Contrast with RHMC, where we instead compute

$$\det\left[\frac{D(m_1)}{D(m_2)}\right] = \left\{\det\left[\frac{D^{\dagger}D(m_1)}{D^{\dagger}D(m_2)}\right]\right\}^{1/2}$$

using a rational approximation to the square root

• Exact in the sense that one does not need to take a fractional power of the fermion determinant to remove unwanted flavors

Derivation Sketch I [Chen and Chiu, Phys. Lett. B738 55-60]

- We begin by factoring the DWF Dirac operator:
 - ▶ D_w: Wilson Dirac operator
 - c,d: Möbius parameters
 - ▶ $L_{ss'}$: 5D hopping term

$$\begin{split} (D_{\text{DWF}})_{xx',ss'} &= \left((c+d) \, D_w + \mathbb{1} \right)_{xx'} \delta_{ss'} + \left((c-d) \, D_w - \mathbb{1} \right)_{xx'} L_{ss'} \\ &= \underbrace{\left\{ (D_w)_{xx'} \, \delta_{ss'} + \delta_{xx'} \left(d + c \, (1+L) \, (1-L)^{-1} \right)_{ss'}^{-1} \right\}}_{D_{\text{EOFA}} \equiv (D_w)_{xx'} \, \delta_{ss'} + \delta_{xx'} \left(P_+ M_+ + P_- M_- \right)_{ss'} \end{split} \times \underbrace{\left\{ d \, (1-L) + c \, (1+L) \right\}}_{D_{\text{EOFA}} \equiv (D_w)_{xx'} \, \delta_{ss'} + \delta_{xx'} \left(P_+ M_+ + P_- M_- \right)_{ss'} \right\}}_{D_{\text{EOFA}} = (D_w)_{xx'} \, \delta_{ss'} + \delta_{xx'} \left(P_+ M_+ + P_- M_- \right)_{ss'} } \end{split}$$

- $\bullet~M_{\pm}$ does not involve the gauge field and can be worked out explicitly
- Shamir kernel:
 - ▶ (c,d) = (1/2, 1/2)
 - $\blacktriangleright~D_{\rm DWF}$ and $D_{\rm EOFA}$ are the same operator
- Möbius kernel:
 - ► $(c,d) = (\alpha/2, 1/2)$
 - ▶ $D_{\rm EOFA}^{\perp}$ is dense but has a somewhat better condition number than $D_{\rm DWF}^{\perp}$
- $H\equiv\gamma_5 R_5 D_{\mathrm{EOFA}}$ is Hermitian, but not positive-definite

Derivation Sketch II [Chen and Chiu, Phys. Lett. B738 55-60]

• Consider a slight generalization of $D_{\rm EOFA}$, in the chiral representation of γ^{μ} :

$$\widetilde{D}(m_1, m_2) = \begin{pmatrix} W - M_5 + M_+(m_1) & (\sigma \cdot t) \\ -(\sigma \cdot t)^{\dagger} & W - M_5 + M_-(m_2) \end{pmatrix}$$

• Applying the Schur det. identity to $D_{\text{EOFA}}(m) = \widetilde{D}(m, m)$, and taking a ratio: $\frac{\det (D_{\text{EOFA}}(m_1))}{\det (D_{\text{EOFA}}(m_2))} = \frac{\det (W - M_5 + M_+(m_1)) \cdot \det (H_-(m_1))}{\det (W - M_5 + M_-(m_2)) \cdot \det (H_+(m_2))} \stackrel{\checkmark}{\longrightarrow} \text{Schur complements}$

• Defining $\Delta_{\pm} \equiv R_5 \left(M_{\pm}(m_2) - M_{\pm}(m_1) \right) = k\Omega_{\pm}\Omega_{\pm}^{\dagger} \left(\propto m_2 - m_1 \right)$, also have: $\frac{\det \left(\widetilde{D}(m_1, m_2) \right)}{\det \left(\widetilde{D}(m_1, m_2) \right)} = 1 \implies \frac{\det \left(W - M_5 + M_+(m_1) \right)}{\det \left(W - M_5 + M_-(m_2) \right)} = \frac{\det \left(H_+(m_2) - \Delta_+ \right)}{\det \left(H_-(m_1) + \Delta_- \right)}$

• Finally, using Sylvester's determinant identity $(\det(\mathbb{1} + AB) = \det(\mathbb{1} + BA)):$ $\frac{\det(D_{\text{EOFA}}(m_1))}{\det(D_{\text{EOFA}}(m_2))} = \left[\det\left(\underbrace{\mathbb{1} + k\Omega_{-}^{\dagger}\frac{1}{H_{-}(m_1)}\Omega_{-}}_{\equiv \mathcal{M}_L}\right)\right]^{-1} \cdot \left[\det\left(\underbrace{\mathbb{1} + k\Omega_{+}^{\dagger}\frac{1}{H_{+}(m_2) - \Delta_{+}P_{+}}\Omega_{+}}_{\equiv \mathcal{M}_R}\right)\right]^{-1}$ $\equiv \mathcal{M}_L \quad \text{Hermitian and pos.-def.!} \quad \equiv \mathcal{M}_R$

Derivation Sketch III [Chen and Chiu, Phys. Lett. B738 55-60]

• To simulate, we express the determinant as a path integral:

$$\frac{1}{\det\left(\mathcal{M}_{L}\right)} \cdot \frac{1}{\det\left(\mathcal{M}_{R}\right)} = \int \mathcal{D}\phi_{L} \mathcal{D}\phi_{L}^{\dagger} \mathcal{D}\phi_{R} \mathcal{D}\phi_{R}^{\dagger} e^{-\phi_{L}^{\dagger} \mathcal{M}_{L} \phi_{L} - \phi_{R}^{\dagger} \mathcal{M}_{R} \phi_{R}}$$

- ϕ_L and ϕ_R are bosonic pseudofermion fields with two spin components
- \mathcal{M}_L and \mathcal{M}_R contain nested matrix inverses ightarrow expensive to compute with CG
- Easier to work with block form:

$$\mathcal{M}_{\rm EOFA} = \mathbb{1} - kP_{-}\Omega_{-}^{\dagger}\frac{1}{H(m_{1})}\Omega_{-}P_{-} + kP_{+}\Omega_{+}^{\dagger}\frac{1}{H(m_{2}) - \Delta_{+}P_{+}}\Omega_{+}P_{+}$$

for which we have, in terms of an ordinary four-component spinor:

$$\frac{\det\left(D_{\rm EOFA}(m_1)\right)}{\det\left(D_{\rm EOFA}(m_2)\right)} = \int \mathcal{D}\phi \mathcal{D}\phi^{\dagger} e^{-\phi^{\dagger}\mathcal{M}_{\rm EOFA}\phi}$$

• EOFA evolution requires inversions of the general form $(H(m) + \alpha \Delta_{\pm} P_{\pm})\psi = \phi$

The Hybrid Monte Carlo Algorithm

- We perform dynamical QCD simulations using the HMC algorithm
- Idea: Generate a Markov chain of gauge field configurations by evolving a Hamiltonian system in (unphysical) molecular dynamics "time"
 - Generalized coordinate: Gauge field $(U_{x,\mu})$
 - Conjugate momentum: $\pi_{x,\mu} \in \mathfrak{su}(3)$
 - ► Hamiltonian: $H = \frac{1}{2}\pi^2 + S_g[U] + S_f[U]$
 - Equations of motion:

$$\begin{cases} \partial_{\tau} U_{x,\mu} = \pi_{x,\mu} U_{x,\mu} \\ \partial_{\tau} \pi_{x,\mu} = -T^a \partial_{x,\mu}^a \left(S_g[U] + S_f[U] \right) \end{cases}$$

- Metropolis accept/reject step corrects for finite precision integration
 - ▶ Accept new gauge field $U'_{x,\mu}$ with probability $P_{\text{accept}} = \min(1, e^{-\Delta H})$
- Implementing this for EOFA requires:
 - Action $S_f[U]$
 - Pseudofermion heatbath
 - Seudofermion contribution to momentum update $\pi_{x,\mu} \leftarrow \pi_{x,\mu} T^a \left(\partial_{x,\mu}^a S_f[U] \right) \Delta \tau$
- Tests performed on two $N_f = 2 + 1$ Shamir DWF ensembles:
 - ▶ 161: $16^3 \times 32 \times 16$, $\beta = 2.13$, $(am_l, am_h) = (0.01, 0.032)$ [Phys. Rev. D76, 014504]
 - ▶ 321: $32^3 \times 64 \times 16$, $\beta = 2.25$, $(am_l, am_h) = (0.004, 0.03)$ [Phys. Rev. D93, 054502]

I. Action: Equivalence of EOFA and RHMC for Möbius DWF

• Relation between RHMC determinant ratios and EOFA determinant ratios:

(a) Free 4^5 lattice, $\Delta m_q = 0.01$, $\alpha = 4.0$ (Möbius scale), 20 stochastic hits.

(b) 16I. Reweight $am_h = 0.032 \rightarrow 0.042$ in N_{rw} steps with 10 hits per step.

• Observe significantly smaller systematic and statistical errors for EOFA

Cheaper to perform quark mass reweighting with EOFA!

II. Heatbath

- At start of HMC trajectory: draw η with $P(\eta) \propto e^{-\eta^2/2}$, compute $\phi = \mathcal{M}_{\rm EOFA}^{-1/2} \eta$
- Still requires rational approximation $x^{-1/2} \simeq \alpha_0 + \sum_{l=1}^{N_p} \alpha_l / (\beta_l + x)$
- Defining $\gamma_l = (1 + \beta_l)^{-1}$, can show

$$\mathcal{M}_{\rm EOFA}^{-1/2} \simeq \alpha_0 \mathbb{1} + \sum_{l=1}^{N_p} \alpha_l \gamma_l \left[\mathbb{1} + k \gamma_l P_- \Omega_-^{\dagger} \frac{1}{H(m_1) - \gamma_l \Delta_- P_-} \Omega_- P_- - k \gamma_l P_+ \Omega_+^{\dagger} \frac{1}{H(m_2) - \gamma_l \beta_l \Delta_+ P_+} \Omega_+ P_+ \right]$$

• $\Delta_{\pm}P_{\pm}$ has large number of zero modes \rightarrow not invertible! (no multishift)

D. Murphy (Lattice 2016)

III. Momentum Update

• EOFA pseudofermion force is

$$\begin{pmatrix} \partial_{x,\mu}^{a} S_{f}[U] = k \chi_{L}^{\dagger} \gamma_{5} R_{5} \left(\partial_{x,\mu}^{a} D_{w} \right) \chi_{L} - k \chi_{R}^{\dagger} \gamma_{5} R_{5} \left(\partial_{x,\mu}^{a} D_{w} \right) \chi_{R} \\ \chi_{L} = [H(m_{1})]^{-1} \Omega_{-} P_{-} \phi, \quad \chi_{R} = [H(m_{2}) - \Delta_{+} P_{+}]^{-1} \Omega_{+} P_{+} \phi$$

- Compared to RHMC:
 - Cheaper to evaluate
 - ▶ Somewhat smaller total force, with $\langle F \rangle_L \ll \langle F \rangle_R$

Figure: Lattice-wide distribution of EOFA and RHMC total forces by link

Figure: Lattice-wide distribution of EOFA force contributions from L and R terms by link

D. Murphy (Lattice 2016)

Test: Reproduce 16I Ensemble [Phys. Rev. D76, 014504]

• Parallel $N_f = 2 + 1$ evolutions: compare RHMC heavy quark to EOFA heavy quark

β	2.13		EOFA	RHMC		EOFA	RHMC
am_l	0.01	am_{π}	0.243(2)	0.244(1)	af_{π}	0.0887(8)	0.0883(6)
amb	0.032	am_K	0.326(2)	0.326(1)	af_K	0.0966(6)	0.0963(4)
	0.002	am_{Ω}	0.990(9)	0.995(10)	$am'_{\rm res}(m_l)$	0.00305(4)	0.00306(4)
Table: Parameters							

Table: Spectrum

Optimizations I: Accelerating EOFA Inversions

- EOFA solves accelerated with:
 - Even-odd preconditioning
 - Optimized BG/Q assembly generated by BAGEL [P. Boyle]
 - Mixed-precision CG
- Test on 32I ensemble at physical am_l and am_s determined by chiral fits [Phys. Rev. D**93**, 054502]
- Reference (dashed line): even-odd preconditioned multishift solve of $D^{\dagger}D$ with same quark mass

	$am_s^{\rm phys}$	$am_l^{\rm phys}$
EOFA	7.6 s	156.5 s
RHMC	37.7 s	422.5 s
Ratio	5.0	2.7

Table: Comparison of total CG inversion time between optimized EOFA and RHMC

Optimizations II: Accelerating EOFA Heatbath

- Following TWQCD, we use the chronological inversion method introduced by Brower et al. to forecast CG guesses [Nucl. Phys. B484, 353-374]
- Forecast solution to $\left(H+\alpha_l\Delta_\pm P_\pm\right)\psi=\phi$ by minimizing

$$\Psi[x] = x^{\dagger} \left(H + \alpha_l \Delta_{\pm} P_{\pm} \right) x - \phi^{\dagger} x - x^{\dagger} \phi$$

over the space of accumulated solutions for previous shifts α_l

Conclusions and Next Steps

- We have:
 - ▶ Independently implemented TWQCD's EOFA, and performed basic algorithmic tests
 - Reproduced 16I ensemble using EOFA to evolve the heavy flavor
 - Partially implemented and tested a number of optimizations:
 - Even-odd preconditioning
 - Optimized BG/Q assembly for sparse matrix applications (BAGEL)
 - Mixed-precision CG
 - Forecasted CG guesses for heatbath
 - 6 Hasenbusch mass splitting
- Next steps:
 - Better ideas to ameliorate the cost of the EOFA heatbath?
 - Tuning Sexton-Weingarten integration and/or Hasenbusch mass splitting?
 - G-parity simulations with EOFA light quarks
 - Port to P. Boyle's Grid library: is a further speed-up possible if we perform deflated sparse matrix inversions with HDCR? [Poster by A. Yamaguchi and P. Boyle]
- We expect a gain over RHMC with a fully optimized and tuned implementation of EOFA, but the exact gain is difficult to predict!

Thank you!

Extra Slides

Spectrum of the EOFA and RHMC actions

- Can think of EOFA as a preconditioning step applied to RHMC action
 - ▶ Mapping of eigenvalue spectrum: $(\lambda_{\min}, \lambda_{\max})_{RHMC} \mapsto (1, \lambda_{\max})_{EOFA}$
 - \blacktriangleright Similar range, but $\mathcal{M}_{\rm EOFA}$ spectrum more densely concentrated near low end
 - Computes same determinant ratio, but easier to stochastically estimate M_{EOFA}!
 - ▶ Notation: action is $S = \phi^{\dagger} \mathcal{M} \phi$

D. Murphy (Lattice 2016)