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Motivation

Recent advances in algorithms used by RBC/UKQCD have driven down the cost of
simulating degenerate light quark pairs:

1 Extensive tuning of forces via Hasenbusch mass splitting [Phys. Lett. B519 177-182]
2 Shamir DWF → Möbius DWF → zMöbius DWF [Izubuchi et al., Lattice 2015]
3 Reduced Ls approximation during molecular dynamics [proposed by Brower et al.,

arXiv:1206.5214; implemented by G. McGlynn, Lattice 2015]
4 Mixed precision CG: single precision inner solves, double precision defect correction

RHMC strange and charm quark determinants are now the most expensive part of
our evolution strategy

Gauge 5800 s 11.6%
Light quarks (Ls = 14) 18000 s 36.1%

Ls = 14/Ls = 32 correction det. 1600 s 3.3%
Strange and charm quarks (Ls = 32) 24200 s 48.5%

DED 170 s 0.3%
Total 50000 s —

Table: Timings for one HMC trajectory of 802 × 96× 192 Nf = 2 + 1 + 1 physical mass
a−1 ≈ 3 GeV ensemble on a 12,288-node BG/Q partition [G. McGlynn, Ph.D. thesis]
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Motivation (cont’d.)

These techniques are of limited use for RHMC:
I Unclear how to restart inner single-precision solver in the context of multishift CG
I Cost of multishift D†D inversions at light quark masses largely negates potential gain

from Hasenbusch splitting

For I = 0 K → ππ calculations with G-parity boundary conditions D†D describes 4
flavors, and RHMC is needed for light quarks as well [C. Kelly, Thur. @ 15:50]

Goal: Explore the exact one-flavor algorithm as an alternative to RHMC for
simulating single quark flavors or degenerate G-parity quark pairs
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The Exact One-Flavor Algorithm

Introduced by TWQCD for efficient one-flavor simulations on GPU clusters
History:
I 2009: Introduction [TWQCD, arXiv:0911.5532]
I 2014: Detailed derivation [Chen and Chiu, Phys. Lett. B738 55-60]
I 2014: Demonstration of ∼ 20% overall speed-up in 163 × 32× 16 Nf = 2 + 1

simulation with EOFA vs. RHMC for heavy quark [Chen and Chiu, arXiv:1412.0819]

Main idea: Use block manipulations in spin space to write

det
[
D(m1)
D(m2)

]
= 1

det (ML) ·
1

det (MR)

with ML and MR Hermitian and positive-definite
Contrast with RHMC, where we instead compute

det
[
D(m1)
D(m2)

]
=
{

det
[
D†D(m1)
D†D(m2)

]}1/2

using a rational approximation to the square root
Exact in the sense that one does not need to take a fractional power of the fermion
determinant to remove unwanted flavors
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Derivation Sketch I [Chen and Chiu, Phys. Lett. B738 55-60]

We begin by factoring the DWF Dirac operator:
I Dw: Wilson Dirac operator
I c,d: Möbius parameters
I Lss′ : 5D hopping term

(DDWF)xx′,ss′ =
(

(c+ d)Dw + 1

)
xx′δss′ +

(
(c− d)Dw − 1

)
xx′Lss′

=
{

(Dw)xx′ δss′ + δxx′
(
d+ c (1 + L) (1− L)−1)−1

ss′

}
︸ ︷︷ ︸
DEOFA ≡ (Dw)xx′ δss′ + δxx′ (P+M+ + P−M−)ss′

×
�����������{
d (1− L) + c (1 + L)

}

M± does not involve the gauge field and can be worked out explicitly
Shamir kernel:
I (c, d) = (1/2, 1/2)
I DDWF and DEOFA are the same operator

Möbius kernel:
I (c, d) = (α/2, 1/2)
I D⊥EOFA is dense but has a somewhat better condition number than D⊥DWF

H ≡ γ5R5DEOFA is Hermitian, but not positive-definite
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Derivation Sketch II [Chen and Chiu, Phys. Lett. B738 55-60]

Consider a slight generalization of DEOFA, in the chiral representation of γµ:

D̃(m1,m2) =

(
W −M5 +M+(m1) (σ · t)

− (σ · t)† W −M5 +M−(m2)

)

Applying the Schur det. identity to DEOFA(m) = D̃(m,m), and taking a ratio:
det (DEOFA(m1))
det (DEOFA(m2)) = det (W −M5 +M+(m1)) · det (H−(m1))

det (W −M5 +M−(m2)) · det (H+(m2))

Defining ∆± ≡ R5 (M±(m2)−M±(m1)) = kΩ±Ω†± (∝ m2 −m1), also have:

det
(
D̃(m1,m2)

)
det
(
D̃(m1,m2)

) = 1 =⇒ det (W −M5 +M+(m1))
det (W −M5 +M−(m2)) = det (H+(m2)−∆+)

det (H−(m1) + ∆−)

Finally, using Sylvester’s determinant identity (det(1 +AB) = det(1 +BA)):

det (DEOFA(m1))
det (DEOFA(m2)) =

[
det

(
1 + kΩ†−

1
H−(m1)Ω−︸ ︷︷ ︸

)]−1

·

[
det

(
1 + kΩ†+

1
H+(m2)−∆+P+

Ω+︸ ︷︷ ︸
)]−1

D. Murphy (Lattice 2016) EOFA Domain Wall Fermion Simulations July 27th, 2016 6 / 17

Schur complements

≡ML ≡MRHermitian and pos.-def.!



Derivation Sketch III [Chen and Chiu, Phys. Lett. B738 55-60]

To simulate, we express the determinant as a path integral:
1

det (ML) ·
1

det (MR) =
∫
DφLDφ†LDφRDφ

†
Re
−φ†

L
MLφL−φ

†
R
MRφR

φL and φR are bosonic pseudofermion fields with two spin components
ML and MR contain nested matrix inverses → expensive to compute with CG
Easier to work with block form:

MEOFA = 1− kP−Ω†−
1

H(m1)Ω−P− + kP+Ω†+
1

H(m2)−∆+P+
Ω+P+

for which we have, in terms of an ordinary four-component spinor:
det (DEOFA(m1))
det (DEOFA(m2)) =

∫
DφDφ†e−φ

†MEOFAφ

EOFA evolution requires inversions of the general form
(
H(m) + α∆±P±

)
ψ = φ
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The Hybrid Monte Carlo Algorithm

We perform dynamical QCD simulations using the HMC algorithm
Idea: Generate a Markov chain of gauge field configurations by evolving a
Hamiltonian system in (unphysical) molecular dynamics “time”
I Generalized coordinate: Gauge field (Ux,µ)
I Conjugate momentum: πx,µ ∈ su(3)
I Hamiltonian: H = 1

2π
2 + Sg [U ] + Sf [U ]

I Equations of motion: {
∂τUx,µ = πx,µUx,µ

∂τπx,µ = −Ta∂ax,µ
(
Sg [U ] + Sf [U ]

)
Metropolis accept/reject step corrects for finite precision integration
I Accept new gauge field U ′x,µ with probability Paccept = min

(
1, e−∆H

)
Implementing this for EOFA requires:

1 Action Sf [U ]
2 Pseudofermion heatbath
3 Pseudofermion contribution to momentum update πx,µ ← πx,µ − Ta

(
∂ax,µSf [U ]

)
∆τ

Tests performed on two Nf = 2 + 1 Shamir DWF ensembles:
I 16I: 163 × 32× 16, β = 2.13, (aml, amh) = (0.01, 0.032) [Phys. Rev. D76, 014504]
I 32I: 323 × 64× 16, β = 2.25, (aml, amh) = (0.004, 0.03) [Phys. Rev. D93, 054502]
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I. Action: Equivalence of EOFA and RHMC for Möbius DWF

Relation between RHMC determinant ratios and EOFA determinant ratios:{
det
[
D†DDWF(m1)
D†DDWF(m2)

]}1/2

=
(

(c+ d)Ls +m1 (c− d)Ls

(c+ d)Ls +m2 (c− d)Ls

)12L3T

det
[
DEOFA(m1)
DEOFA(m2)

]
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(a) Free 45 lattice, ∆mq = 0.01, α = 4.0
(Möbius scale), 20 stochastic hits.
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(b) 16I. Reweight amh = 0.032 → 0.042
in Nrw steps with 10 hits per step.

Observe significantly smaller systematic and statistical errors for EOFA
I Cheaper to perform quark mass reweighting with EOFA!
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II. Heatbath

At start of HMC trajectory: draw η with P (η) ∝ e−η
2/2, compute φ =M−1/2

EOFAη

Still requires rational approximation x−1/2 ' α0 +
∑Np

l=1 αl/(βl + x)
Defining γl = (1 + βl)−1, can show

M−1/2
EOFA ' α01 +

Np∑
l=1

αlγl

[
1 + kγlP−Ω†−

1
H(m1)− γl∆−P−

Ω−P− − kγlP+Ω†+
1

H(m2)− γlβl∆+P+
Ω+P+

]

∆±P± has large number of zero modes → not invertible! (no multishift)
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Figure: Spectral range of MEOFA.
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Figure: Heatbath relative error using Np poles.
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III. Momentum Update

EOFA pseudofermion force is{
∂ax,µSf [U ] = kχ†Lγ5R5

(
∂ax,µDw

)
χL − kχ†Rγ5R5

(
∂ax,µDw

)
χR

χL = [H(m1)]−1 Ω−P−φ, χR = [H(m2)−∆+P+]−1 Ω+P+φ

Compared to RHMC:
I Cheaper to evaluate
I Somewhat smaller total force, with 〈F 〉L � 〈F 〉R
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Figure: Lattice-wide distribution of EOFA and
RHMC total forces by link
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Figure: Lattice-wide distribution of EOFA force
contributions from L and R terms by link
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Test: Reproduce 16I Ensemble [Phys. Rev. D76, 014504]

Parallel Nf = 2 + 1 evolutions: compare RHMC heavy quark to EOFA heavy quark
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Table: Parameters

EOFA RHMC EOFA RHMC
amπ 0.243(2) 0.244(1) afπ 0.0887(8) 0.0883(6)
amK 0.326(2) 0.326(1) afK 0.0966(6) 0.0963(4)
amΩ 0.990(9) 0.995(10) am′res(ml) 0.00305(4) 0.00306(4)

Table: Spectrum
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Optimizations I: Accelerating EOFA Inversions
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EOFA (preconditioned + mixed CG)
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EOFA solves accelerated with:
I Even-odd preconditioning
I Optimized BG/Q assembly

generated by BAGEL [P. Boyle]
I Mixed-precision CG

Test on 32I ensemble at physical
aml and ams determined by chiral
fits [Phys. Rev. D93, 054502]
Reference (dashed line): even-odd
preconditioned multishift solve of
D†D with same quark mass

amphys
s amphys

l

EOFA 7.6 s 156.5 s
RHMC 37.7 s 422.5 s
Ratio 5.0 2.7

Table: Comparison of total CG inversion
time between optimized EOFA and RHMC
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Optimizations II: Accelerating EOFA Heatbath
Following TWQCD, we use the chronological inversion method introduced by
Brower et al. to forecast CG guesses [Nucl. Phys. B484, 353-374]
Forecast solution to (H + αl∆±P±)ψ = φ by minimizing

Ψ[x] = x† (H + αl∆±P±)x− φ†x− x†φ

over the space of accumulated solutions for previous shifts αl
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Test: 16I, 10 poles in
rational approximation
Find ∼ 30% reduction in
total iteration count
No additional gain from
sharing solutions
between L and R terms
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Conclusions and Next Steps

We have:
I Independently implemented TWQCD’s EOFA, and performed basic algorithmic tests
I Reproduced 16I ensemble using EOFA to evolve the heavy flavor
I Partially implemented and tested a number of optimizations:

1 Even-odd preconditioning
2 Optimized BG/Q assembly for sparse matrix applications (BAGEL)
3 Mixed-precision CG
4 Forecasted CG guesses for heatbath
5 Hasenbusch mass splitting

Next steps:
I Better ideas to ameliorate the cost of the EOFA heatbath?
I Tuning Sexton-Weingarten integration and/or Hasenbusch mass splitting?
I G-parity simulations with EOFA light quarks
I Port to P. Boyle’s Grid library: is a further speed-up possible if we perform deflated

sparse matrix inversions with HDCR? [Poster by A. Yamaguchi and P. Boyle]

We expect a gain over RHMC with a fully optimized and tuned implementation of
EOFA, but the exact gain is difficult to predict!

Thank you!
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Spectrum of the EOFA and RHMC actions

Can think of EOFA as a preconditioning step applied to RHMC action
I Mapping of eigenvalue spectrum: (λmin, λmax)RHMC 7→ (1, λmax)EOFA
I Similar range, but MEOFA spectrum more densely concentrated near low end
I Computes same determinant ratio, but easier to stochastically estimate MEOFA!
I Notation: action is S = φ†Mφ
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Figure: 45 free lattice, am1 = 0.1, am2 = 1.0, aM5 = 1.8. Lines mark 95% of density.
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MRHMC =
(
D†D(m2)

)1/4 (
D†D(m1)

)−1/2 (
D†D(m2)

)1/4MEOFA = 1− kP−Ω†−
1

H(m1)Ω−P− + kP+Ω†+
1

H(m2)−∆+P+
Ω+P+


