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Motivation

@ Recent advances in algorithms used by RBC/UKQCD have driven down the cost of
simulating degenerate light quark pairs:

@ Extensive tuning of forces via Hasenbusch mass splitting [Phys. Lett. B519 177-182]

@ Shamir DWF — Mébius DWF — zMobius DWF [lzubuchi et al., Lattice 2015]

© Reduced L, approximation during molecular dynamics [proposed by Brower et al.,
arXiv:1206.5214; implemented by G. McGlynn, Lattice 2015]

© Mixed precision CG: single precision inner solves, double precision defect correction

@ RHMC strange and charm quark determinants are now the most expensive part of
our evolution strategy

Gauge 5800 s 11.6%
Light quarks (L, = 14) 18000 s  36.1%
Ls; = 14/L, = 32 correction det. 1600 s 3.3%
Strange and charm quarks (L, = 32) 24200s 48.5%
DED 170 s 0.3%

Total 50000 s —

Table: Timings for one HMC trajectory of 802 x 96 x 192 Ny =2+ 1+ 1 physical mass
a~! ~ 3GeV ensemble on a 12,288-node BG/Q partition [G. McGlynn, Ph.D. thesis]
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Motivation (cont'd.)

@ These techniques are of limited use for RHMC:

» Unclear how to restart inner single-precision solver in the context of multishift CG
» Cost of multishift DT D inversions at light quark masses largely negates potential gain
from Hasenbusch splitting

e For I =0 K — 7 calculations with G-parity boundary conditions D D describes 4
flavors, and RHMC is needed for light quarks as well [C. Kelly, Thur. @ 15:50]

o Goal: Explore the exact one-flavor algorithm as an alternative to RHMC for
simulating single quark flavors or degenerate G-parity quark pairs
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The Exact One-Flavor Algorithm

Introduced by TWQCD for efficient one-flavor simulations on GPU clusters

@ History:

» 2009: Introduction [TWQCD, arXiv:0911.5532]

» 2014: Detailed derivation [Chen and Chiu, Phys. Lett. B738 55-60]

> 2014: Demonstration of ~ 20% overall speed-up in 163 x 32 x 16 Ny =2 +1
simulation with EOFA vs. RHMC for heavy quark [Chen and Chiu, arXiv:1412.0819]

@ Main idea: Use block manipulations in spin space to write

det D(ml) _ 1 . 1
D(ms2) | det(My) det(Mg)

with M and Mg Hermitian and positive-definite

o Contrast with RHMC, where we instead compute

D(m1)| DD(m) | ?
o [ 2] f [ 200,

using a rational approximation to the square root

@ Exact in the sense that one does not need to take a fractional power of the fermion
determinant to remove unwanted flavors
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|
Derivation Sketch | [Chen and Chiu, Phys. Lett. B738 55-60]

@ We begin by factoring the DWF Dirac operator:
» D,: Wilson Dirac operator
» c,d: Mobius parameters
» L, : 5D hopping term
(DoWE) oo = ((¢+d) D+ 1) b0+ ((¢—d) D — 1), Loy

1

- {(Dw)m,éss/-&-ém/ (d—|—c(1—|—L)(1—L)_1)S—S,}>< d(1— L A+c(1+1L)

ss’

’ Drora = (Du), )/ 0ssr + 0gr (Py My + P_M_)

@ M+ does not involve the gauge field and can be worked out explicitly
@ Shamir kernel:
> (c,d)=(1/2,1/2)
» Dpwr and Dgopa are the same operator
@ Mobius kernel:
> (c,d) =(a/2,1/2)
> Dé—OFA is dense but has a somewhat better condition number than ij-WF

o H = vy5Rs Drora is Hermitian, but not positive-definite
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|
Derivation Sketch Il [Chen and Chiu, Phys. Lett. B738 55-60]

o Consider a slight generalization of Dgora, in the chiral representation of *:

5( )_ W—M5+M+(m1) (O"t)
) = - W — Ms + M- (m2)

o Applying the Schur det. identity to Drora(m) = D(m, m), and taking a ratio:
det (Dgora(m1))  det (W — Ms + M, (m1)) - det (H_(m1))
(

) ( ~
det (Drora (m2)) = Tt (W = M + M (ms)) - det (Ha (ms)) +— Schur complements

o Defining Ay = Rs (Mx(m2) — Ma(m1)) = kQ+QL (o< ma —m1), also have:

det (D(m1,m2)) ., det (W — My + M (my)) _ det (He(ms) - As)
det (]_N)(ml7 mz)) N det (W — M5 + M_(m2)) ~ det (H_(m1) + A_)

@ Finally, using Sylvester's determinant identity (det(1 + AB) = det(1 + BA)):

1 —1

det (DEOFA(ml)) + 1 1

det (Deoralm1)) _ 1ot (14 ko 0. et (1400t —— 1L g

det (Dmora(mz) |\ " T ) T ) — ALy
—_—

=My = Mr

Hermitian and pos.-def.!
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|
Derivation Sketch Il [Chen and Chiu, Phys. Lett. B738 55-60)]

@ To simulate, we express the determinant as a path integral:

1 1
det (Mz) det (Mg)

— / D¢LD¢LID¢RD¢1I‘%E—¢EML¢L—¢TRMR¢R

@ ¢r, and ¢r are bosonic pseudofermion fields with two spin components
@ M and Mpg contain nested matrix inverses — expensive to compute with CG
o Easier to work with block form:

1
H(ma1)

1
(m2) — Ay Py

Meora = 1 — kP_QF Q_P_ + kP QL 7 QL Py J

for which we have, in terms of an ordinary four-component spinor:

det (Deora(ma)) _ fe=¢" Meorad
det (Deora(m2)) /D¢D¢ ‘

o EOFA evolution requires inversions of the general form (H(m) + aAiPi)w =¢
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The Hybrid Monte Carlo Algorithm

o We perform dynamical QCD simulations using the HMC algorithm
o Idea: Generate a Markov chain of gauge field configurations by evolving a
Hamiltonian system in (unphysical) molecular dynamics “time”
» Generalized coordinate: Gauge field (Usz,.)
» Conjugate momentum: 7z, € su(3)
» Hamiltonian: H = %772 + 54U+ S¢[U]
» Equations of motion:

OrUs,p = Ta,uUs
Or o = —T0% . (Sq[U] + S¢[U])
@ Metropolis accept/reject step corrects for finite precision integration
» Accept new gauge field Ua/c,u with probability Paccept = min (1,@*AH)

@ Implementing this for EOFA requires:

© Action S¢[U]
@ Pseudofermion heatbath

© Pseudofermion contribution to momentum update . , < Tz, — T (a;’u

Sg[U]) AT
@ Tests performed on two Ny = 2 4 1 Shamir DWF ensembles:

> 16l: 163 x 32 x 16, 8 = 2.13, (amy, amy,) = (0.01,0.032) [Phys. Rev. D76, 014504]
> 321: 323 x 64 x 16, 8 = 2.25, (amy, amy,) = (0.004,0.03) [Phys. Rev. D93, 054502]
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I. Action: Equivalence of EOFA and RHMC for Mébius DWF

@ Relation between RHMC determinant ratios and EOFA determinant ratios:

{det |:DTDDWF(m1):| }1/2 _ ((c+d)L5 +ma (c— d)Ls)12L3T ot |:DEOFA(m1):|

Dt Dpwr(m2) (c+ d)LS + ma (c— d)LS Dgora (m2)

0.15 - 2 i T
f — Exact _ ¢ RHMC
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’ITL,I Nrw
(a) Free 45 lattice, Amy = 0.01, o = 4.0 (b) 161. Reweight amj, = 0.032 — 0.042
(Mébius scale), 20 stochastic hits. in N, steps with 10 hits per step.

o Observe significantly smaller systematic and statistical errors for EOFA
» Cheaper to perform quark mass reweighting with EOFA!
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Il. Heatbath

@ At start of HMC trajectory: draw 1 with P(n) « e’"z/2 compute ¢ = ME(I)/;\n

o Still requires rational approxnmatlon a7V~ g+ sz ai/(Bi + x)
@ Defining v, = (1 + 8;)™*, can show

NP
1 1
M2 ~ aol + ;m’yz {1 + kY P- Q_WQ P szP+Q+WQ+P+] J

@ A4 Py has large number of zero modes — not invertible! (no multishift)

10% - 10-2
. : /\um,\ = 10-4
S0 . = .
102 290aq.. .. - min = s 3
> . =
= .- S .
S Seq, < 10
=10 2o §
g/ . §IU—IU ‘
< ) :
10} I 107
=
="
-1 y 1071 S
10 1072 1071 100 0 2 4 6 8 10 12 14 16 18
amy (ams = 1.0) N,
Figure: Spectral range of Mgora.- Figure: Heatbath relative error using N, poles.
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[1l. Momentum Update

o EOFA pseudofermion force is
8%,.87 U] = kxtvsRs (95.,.Dw) x1 — kxhysRs (9%, Dw) Xr
xe=[H(m)] ' Q P ¢, xr=[H(m2)— APy QP
o Compared to RHMC:

» Cheaper to evaluate
» Somewhat smaller total force, with (F'); < (F)g

10° 10°

Il EOFA (R)

(F)p, = 0.0041
(Fyr = 0.0239

(F)gora = 0.0239
(F)rive = 0.0364

Percentage
Percentage

0.04 0.08 0.12 : . 0.04 006 008
£l 1l

Figure: Lattice-wide distribution of EOFA and Figure: Lattice-wide distribution of EOFA force
RHMC total forces by link contributions from L and R terms by link
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N
Test: Reproduce 161 Ensemble [Phys. Rev. D76, 014504]

o Parallel Ny = 24 1 evolutions: compare RHMC heavy quark to EOFA heavy quark

0.590 (P) vs. MD traj. 1_AH vs. MD traj. 0.2 Q (%)

0.1 EOFA

0.0

02

0.1 RHMC
0586, 500 1000 1500 0 500 1000 1500 >0 10 0 10

8 2.13 EOFA RHMC EOFA RHMC

amy 0.01 am, 0.243(2)  0.244(1) afx 0.0887(8) 0.0883(6)
amp 0.032 amg  0.326(2)  0.326(1) afk 0.0966(6) 0.0963(4)

amq  0.990(9) 0.995(10) am/l.(m;) 0.00305(4) 0.00306(4)

Table: Parameters

Table: Spectrum
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Optimizations I: Accelerating EOFA Inversions

@ EOFA solves accelerated with:

» Even-odd preconditioning
- - Ref. RHMC multishitt » Optimized BG/Q assembly
_ Egi: E::‘epc'zszi’:i‘:;::;:d) generated by BAGEL [P. Boyle]
—  EOFA (preconditioned + mixed CG) > Mixed-precision CG

10° : ™

' S amPhYS = 0.02424

o Test on 32| ensemble at physical
am; and am, determined by chiral
— fits [Phys. Rev. D93, 054502]

i o Reference (dashed line): even-odd
: preconditioned multishift solve of

i W i i Y t .
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m*‘-’: \H T Ratio 5.0 2.7
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Time (s) Table: Comparison of total CG inversion
time between optimized EOFA and RHMC
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Optimizations Il: Accelerating EOFA Heatbath

@ Following TWQCD, we use the chronological inversion method introduced by
Brower et al. to forecast CG guesses [Nucl. Phys. B484, 353-374]

o Forecast solution to (H + oA+ P1) 1) = ¢ by minimizing
Ulz] = 2" (H+uAsP)a—¢le — 2o

over the space of accumulated solutions for previous shifts o

3000 5
** o o 000 o-*" /)
M 1
200} g m A A A : '
\\ /'l
* .
@ 9000l RN /' @ Test: 161, 10 poles in
c - h S i . . .
kel . # rational approximation
© L * O . o
5 1500F { o g @ Find ~ 30% reduction in
g Fipd total iteration count
1000+ (7 .. .
o N @ No additional gain from
Z ,;f,’/ R sharing solutions
5001 -®- Zero o~ :
-® - Last Solution ‘:‘:i‘. between L and R terms
- @ - Forecasted
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Conclusions and Next Steps

@ We have:

» Independently implemented TWQCD's EOFA, and performed basic algorithmic tests
» Reproduced 16l ensemble using EOFA to evolve the heavy flavor
» Partially implemented and tested a number of optimizations:

@ Even-odd preconditioning

@ Optimized BG/Q assembly for sparse matrix applications (BAGEL)

© Mixed-precision CG

@ Forecasted CG guesses for heatbath

© Hasenbusch mass splitting

@ Next steps:

Better ideas to ameliorate the cost of the EOFA heatbath?

Tuning Sexton-Weingarten integration and/or Hasenbusch mass splitting?

G-parity simulations with EOFA light quarks

Port to P. Boyle's Grid library: is a further speed-up possible if we perform deflated
sparse matrix inversions with HDCR? [Poster by A. Yamaguchi and P. Boyle]

vyvyyvyYy

@ We expect a gain over RHMC with a fully optimized and tuned implementation of
EOFA, but the exact gain is difficult to predict!

Thank you!
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Extra Slides
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Spectrum of the EOFA and RHMC actions

@ Can think of EOFA as a preconditioning step applied to RHMC action
» Mapping of eigenvalue spectrum: (Amin, Amax)REMC — (1, Amax)EOFA
» Similar range, but Mgopra spectrum more densely concentrated near low end
» Computes same determinant ratio, but easier to stochastically estimate Mgopa!
» Notation: action is S = ¢T M¢p

! 5 % P+ 1/4

—kp Of
Mgora =1 — kP-Q oy —ALP:

’H( 1)

QP+ kPO

‘ Mgumc = DtD(mg))l/4 (DfD(ml))il/2 (DfD(T’l2)>

B S |

10° I —

10

10°

10%

10!

100 100
0.8 - . . ! 2 0.

1.0 1.0 . K 1.6 1.8 2.0 22

A(MRrmc)
Figure: 45 free lattice, ami = 0.1, ams = 1.0, aMs = 1.8. Lines mark 95% of density.
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