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Motivation for studying K→ππ Decays

● Direct CPV first observed in late 90s at CERN (NA31/NA48) and 
Fermilab (KTeV) in K0→ππ:

measure of indirect CPVmeasure of direct CPV

● In terms of isospin states: ΔI=3/2 decay to I=2 final state, amplitude A2 
ΔI=1/2 decay to I=0 final state, amplitude A0 

     (δI are strong scattering phase shifts.)

(experiment)

● Likely explanation for matter/antimatter asymmetry in Universe, 
baryogenesis, requires violation of CP.

● Amount of CPV in Standard Model appears too low to describe 
measured M/AM asymmetry: tantalizing hint of new physics.

● Small size of ε' makes it particularly sensitive to new direct-CPV 
introduced by most BSM models.



  

Results for ε'
● Re(A0) and Re(A2) from expt.
● Lattice values for Im(A0), Im(A2) and the phase shifts, 

(this work)=
(experiment)

● Total error on Re(ε'/ε) is ~3x the experimental error.

● Find reasonable consistency with Standard Model (at 2.1σ level).
● Tantalizing hint of discrepancy strong motivation for continued study!

● Error is dominated by those on A0.

[Phys.Rev.Lett. 115 (2015) 21, 212001]

Our main focuses are therefore to:

● Increase statistics on A0 calculation, enabling improved precision and 
better systematic error estimation. 

● Reduce dominant NPR systematic error. Although not as vital as the 
above, this error is difficult to estimate and yet is relatively 
straightforward to improve.



  

Statistics increase
● Aim for 4x increase in # of measurements from present 216 within a year. 

● This includes replacing existing data affected by a recently discovered RNG 
seeding error, although we believe the effects of this error to be small.

● Aside from continued BG/Q running via USQCD, UKQCD and RBRC/BNL 
allocations, we are also planning to run on Blue Waters (Cray XE6 CPU) using 
CPS code built on the high-performance Grid library.

● Much additional work undergoing in optimizing measurement code and 
porting to Intel architectures (including KNL, KNH, etc) using Grid. 

● Aim to perform all new measurements using Cori I (Haswell) and II (KNL).

[arXiv:1512.0348 https://github.com/paboyle/Grid]



  

NPR technique
● We use the Rome-Southampton RI-SMOM technique for the 7 independent 

4-quark operators entering the calculation.

field strength renorm
chosen projector chosen external state

(4 quark fields with momentum injected)

● 2 schemes:

(Matrices in brackets differentiate the projectors used for Oi and Zq resp.)

● SMOM scheme defines 

NB: Disconnected diagrams enter here too 

statistically quite noisy (for NPR)



  

Inclusion of G1

● Aside from traditional 7 independent 4-quark operators Q'i, for off-shell 
Green's functions (e.g. in NPR) also mixing with dim-6 two-quark operator  

● Has not heretofore been included in lattice→RI NPR because mixing 
enters at one-loop and therefore can be assumed small.

● Nevertheless we can remove this potential systematic uncertainty by 
including G1 explicitly in our NPR: 

● G1 also enters into the on-shell K→ππ amplitudes, but...

For on-shell matrix elements, continuum EOM for 
bare operators implies

For renormalized Green's functions this implies 

● G1 included in perturbative RI->MSbar matching and Wilson coeffs.  

[McGlynn arXiv:1605.08807]

(8,1)



  

Note that this is a perturbative result and so should be applied at 
sufficiently large μ.

● Plugging this into our definitions of renormalized operators and 
rearranging we obtain a formula relating on-shell matrix elements of 
unrenormalized lattice operators:

This means we never actually have to 
compute matrix elements of G1! 

corrections from PT renorm. 

(these are actually 2-loop 
corrections and can 
therefore be neglected in 
this work)



  

● So we can include G1 in renormalization without needing to compute matrix 
elements of G1. Only have to compute G1 NPR coefficients 

● Plug back into definition of renormalized operators Q':

(NB: We could have computed this with the lattice EOM instead but this 
would force us to use a very specific and complicated discretization of G1)

● Given freedom of discretization, choose staple

● Now we just have to choose a projection operator and external state, and 
wok out the tree-level value to complete the RI-scheme definition.

● (Also in practise need to define subtracted G1 with power-divergent mixing 
with lower-dimensional operators removed)



  

Results

On 243x64 DWF+I 1.78 GeV lattice,  μ=2.29 GeV   (γμ-scheme):

(G1 eliminated using PT)

Absolute difference wrt Z without G1

● Effect resolvable but small as expected



  

NPR improvement

● PRL calculation μ=1.53 GeV renormalization scale somewhat low for 
reliable application of PT.

● Inverse lattice spacing a-1 = 1.38 GeV too small to push μ much further.
● Solution is step-scaling. Idea is that non-perturbative running is universal 

up to discretization effects. Then

lowered coarse-
lattice scale to 
reduce potential 
discretization errors

Finer 243x64 DWF+I 
a-1=1.78 GeV lattice

● For this analysis:

➔ Include G1 explicitly (8x8 matrix) and remove using PT only at high scale.

➔ Do not take the continuum limit of the Z-factors on either lattice    

➔ Do not extrapolate to the chiral limit but mass dependence typically tiny for 
SMOM schemes 



  

● Dominant NPR error arises from use of 1-loop PT for RI→MSbar matching
● To estimate size of truncation errors look at spread of differences between

which would be independent of the RI-scheme if PT were 100% accurate.

● If we assume missing NNLO contributions roughly the same size for the 
two schemes but with potentially opposite signs then  

● To estimate fractional error on renormalized operators

Ratio of matrices can be compared to unity

Scheme for estimating sys. error



  

● 3,3 qq-scheme 1-loop term O(25%) vs O(<5%) for majority of other elements.
➢ Suggests NNLO correction will also be abnormally large as suggested by data. 
➢ As Q3' contribution to result small, ignore this outlier.

● Largest remaining elements suggest O(15%) truncation error at 1.53 GeV reduces to 
O(8%), roughly consistent with change in αs

2 and with 7% truncation error we 

assigned to continuum A2 for which μ=3.0 GeV. 
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Conclusions and Outlook
● Error on ε'/ε dominated by error on A0.

● Expect 4x increase in number of configurations on ~1 year timescale 
leading to ~2x decrease in dominant, stat. error on A0.

● Intend to replace data affected by (seemingly minor) RNG error.
● Significant effort to optimize code and port to upcoming HPC 

architectures (KNL, KNH).

● G1 operator that mixes with four-quark operators at 1-loop now fully 
included in calculation. Effect seems to be %-level as expected.

● Step-scaled renormalization factors increase μ from 1.53 GeV to 2.29 
GeV while simultaneously lowering low scale to 1.33 GeV, reducing 
potential discretization errors in NPR.

● Preliminary analysis suggests 15% scheme-matching PT truncation 
systematic will be reduced to O(8%), roughly in line with the scaling of 
αs

2.

● With increase of μ we might expect similar reduction in O(12%) PT 
truncation error on Wilson coefficients; analysis forthcoming.



  



  

● ε' also provides a new horizontal band constraint on CKM 
matrix:

[Lehner et al 
arXiv:1508.01801]new constraint from our work!

~2σ tension



  

Overview of calculation

perturbative Wilson coeffs.

Imaginary part solely responsible for CPV 
(everything else is pure-real)

10 effective four-quark operators

● At energy scales μ«MW, K→ππ decays use weak EFT:

● Operators must be renormalized into same scheme as Wilson coeffs: 
Use RI-(S)MOM NPR and perturbatively match to MSbar at high 
scale.

renormalization 
matrix (mixing)LL finite-volume correction

(lattice)



  

Summary of RBC/UKQCD calculations

● A2 computed on RBC/UKQCD 643x128 and 483x96 2+1f Mobius DWF 
ensembles with the Iwasaki gauge action. 

● a-1= 2.36 GeV and 1.73 GeV resp - continuum limit taken.

● 10% and 12% total errors on Re(A2) and Im(A2) resp. 

● Statistical errors sub-percent, dominant systematic errors due to 
truncation of PT series in computation of renormalization and Wilson 
coefficients.

● A0 computed on 323x64 Mobius DWF ensemble with Iwasaki+DSDR gauge 
action. G-parity BCs in 3 directions to give physical kinematics.

● Single, coarse lattice with a-1= 1.38 GeV but large physical volume to 
control FV errors.

● 21% and 65% stat errors on Re(A0) and Im(A0) due to disconn. diagrams 
and, for Im(A0) a strong cancellation between Q4 and Q6.

● Dominant, 15% systematic error is due again to PT truncation errors 
exacerbated by low renormalization scale 1.53 GeV.

[Phys.Rev.Lett. 115 (2015) 21, 212001]

[Phys.Rev. D91 (2015) no.7, 074502]
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