Excited and exotic Charmonium, D_s and D meson spectra for two light quark masses

David Tims, Trinity College Dublin

Gavin K. C. Cheung, Cian O'Hara, Graham Moir, Michael Peardon, Sinéad M. Ryan, Christopher E. Thomas

Southampton, 28th July, 2016

David Tims, Trinity College Dublin (Gavin K

Charmed Meson Spectroscopy

 $\land \land \square \land \land \supseteq \land \land \supseteq \land \land \supseteq \land \land \square$ Southampton, 28th July, 2016

Outline of talk

- Why charmed mesons?
- Method and Lattice Details
- Results from $M_\pi \sim 240 MeV$
- Comparison with $M_\pi \sim 400 MeV$

Why mesons with charm quarks?

- Open-charm mesons and Charmonium contain a number of experimentally well-established states.
- However, there are a plethora of unexpected charmonium-like states discovered (X, Y, Z's) and they are subject to many theoretical interpretations.
- Possibilities: hybrid states, tetra-quarks, molecular mesons, hadro-quarkonium.
 - Measured masses and widths of the low-lying $D_{s0}^*(2317)^{\pm}$ and $D_{s1}(2460)^{\pm}$ states are significantly lighter and narrower than expected from phenomenological models. [arXiv:hep-ph/0505206v2]
 - Complete understanding of these states can in principle be achieved using lattice QCD.

Figure: BaBar $B^+ \rightarrow J/\psi \omega K$, $B^0 J/\psi \omega K_S^0$ decays [arXiv:1012.0074]

Charmed Meson Spectroscopy

 \blacksquare \blacksquare = \blacksquare \blacksquare = \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare = \blacksquare \blacksquare \blacksquare = \blacksquare \blacksquare = \blacksquare = \blacksquare \blacksquare = \blacksquare = = \blacksquare = \blacksquare = = \blacksquare = \blacksquare = = \blacksquare =

Lattice details and Method

- Goal: Determine spectrum of open and hidden charmed meson states, including excitations and any states with an intrinsic gluonic component at pion mass $M_{\pi} \sim 240 MeV$. Compare with previous study with $M_{\pi} \sim 400 MeV$. [arXiv:1301.7670]
- We use the setup of the Hadron Spectrum Collaboration; dynamical 2+1 anisotropic lattices [arXiv:1004.4930v1]
- We use distillation to compute correlation functions for a large basis of interpolating operators
- Employing this we solve a GEVP:

$$C_{ij}(t)v_j^n = \lambda(t, t_0)^n C_{ij}(t_0)v_j^n \tag{1}$$

•
$$\lambda \propto e^{-E_n(t-t_0)}$$
, v_j^n related to $Z_i^n = \langle n | \ O_i^\dagger \ | 0
angle$

Lattice Volume	M_{π} (MeV)	$N_{\rm cfgs}$	$N_{\rm tsrcs}$ for $c\bar{c}$, $c\bar{s}$, $c\bar{l}$	$N_{ m vecs}$
$24^3 imes 128$	391	553	32, 16, 16	162
$32^{3} \times 256$	236	484	1, 1, 2	384

→ ∃ > < ∃ >

Operator Overlaps

Figure: **Top row**: principal correlators for a selection of low-lying charmonium states in the T_1^{--} irrep. **Middle row**: the operator-state overlaps, *Z*, for the state above. **Bottom row**: overlaps for the corresponding state on the $M_{\pi} \sim 400$ MeV ensemble.

David Tims, Trinity College Dublin (Gavin K.

Charmed Meson Spectroscopy

Charmonium Spectrum $M_{\pi} \sim 240 MeV$

Figure: Charmonium spectrum up to around 4.5 GeV.

David Tims, Trinity College Dublin (Gavin K.

Charmed Meson Spectroscopy

Southampton, 28th July, 2016

<≣⇒

Charmonium Spectrum $M_{\pi} \sim 240 MeV$

- States labeled by J^{PC}
- Masses presented with M_{η_c} subtracted
- Most states follow $n^{2S+1}L_J$ pattern, grouped into S,P,D,F,G wave multiplets using Z_i
- Red + Blue 'hybrids', some states with exotic quantum numbers 1⁻⁺,0⁺⁻,2⁺⁻

• Group hybrids into multiplets, pattern consistent with $q\bar{q}$ coupled to 1^{+-} gluonic excitation

$D_{\rm s}$ spectrum $M_{\pi} \sim 240 MeV$

Figure: D_s meson spectrum.

Charmed Meson Spectroscopy

★課 ▶ ★ 臣 ▶ ★ 臣 ▶ Southampton, 28th July, 2016

- 31

D_s spectrum $M_\pi \sim~$ 240MeV

- Four states highlighted in red that do not fit n^{2S+1}L_J pattern
- Again: Identified as lightest hybrid meson multiplet, consistent with qq
 (in S-wave) coupled to 1⁺⁻ gluonic excitation

• Not able to identify first excited hybrid multiplet

D spectrum $M_\pi \sim~240 MeV$

Figure: *D* meson spectrum.

Charmed Meson Spectroscopy

 $\Rightarrow \land \textcircled{a} \land \land \textcircled{b} \land \textcircled{b} \land \textcircled{c} \land @ (a) \land @ (a$

10 / 18

Charmonium comparison

Figure: Charmonium spectrum, with $M_{\pi} \sim 240$ MeV (left column for each J^{PC}) compared to the spectrum with $M_{\pi} \sim 400$ MeV (right column for each J^{PC}).

Charmonium comparison

- Light quark dep. enters through sea quarks
- Mild light quark dependence, no change in overall pattern of states
- J/ψ : statistically significant increase in mass
 - \sim 80*MeV* $\rightarrow \sim$ 87*MeV*

 Checked for possible systematic effects arising from scale setting, no effects found!

D_s comparison

Figure: D_s meson spectrum labelled by J^P .

∃ → (∃ →

13 / 18

D_s comparison

- Again, mild light quark dependence, no change in overall pattern of states
- Largest change: 0⁺ corresponding to D^{*}_{s0}(2317), expected influence by DK threshold

• Tendency for hybrids to increase in mass as M_{π} is reduced (however pattern unchanged)

David Tims, Trinity College Dublin (Gavin K

Charmed Meson Spectroscopy

Southampton, 28th July, 2016 14 / 18

D comparison

Figure: D meson spectrum labelled by J^P .

∃ → (∃ →

3

D comparison

- D mesons contain light quarks
- Again, we see mild light quark dependence

• Largest change: Lowest 0⁺ and 1⁺ states, possibly due to coupling to $D\pi$ and $D^{*}\pi$

David Tims, Trinity College Dublin (Gavin K

Charmed Meson Spectroscopy

Southampton, 28th July, 2016

Summary

- Distillation and variational method allow us to extract highly excited spectra and robustly identify the continuum $J^{P(C)}$ of states up to J = 4
- States with intrinsic gluonic excitations and states with exotic quantum numbers identified
- Many states follow the $n^{2S+1}L_J$ pattern, also find states which we identify as hybrid mesons that fall into hybrid supermultiplets, pattern consistent with a quark-antiquark combination coupled to a 1^{+-} gluonic excitation
- Only mild differences between the spectra calculated on an ensemble where $M_{\pi} \sim 240$ MeV to our previously determined spectra on an ensemble with $M_{\pi} \sim 400$ MeV
- Even in the case of the D meson we find only minor quantitative changes
- At least between 240 MeV $\lesssim M_{\pi} \lesssim$ 400 MeV, the mass of the light quarks play very little role in the overall pattern of structure of our hidden and open-charm spectra

David Tims, Trinity College Dublin (Gavin K

• Thank You for listening!

David Tims, Trinity College Dublin (Gavin K.

Charmed Meson Spectroscopy

Southampton, 28th July, 2016 18 / 18