Estimating excited-state contamination using experimental data

Maxwell T. Hansen

Helmholtz-Institut Mainz

July 29th, 2016

MTH and Harvey B. Meyer, to appear

The nucleon axial charge is a basic ingredient in describing neutron beta decay

 $g_{A,\text{expt}} = 1.2723 \pm 0.0023$

Particle data group (2015 update)

In addition, g_A ...

parametrizes the nucleon-pion coupling in ChPT reveals how quark spin contributes to nucleon spin determines how nuclear properties vary with quark mass

The nucleon axial charge is a basic ingredient in describing neutron beta decay

$$g_{A,\text{expt}} = 1.2723 \pm 0.0023$$

Particle data group (2015 update)

In addition, g_A ...

parametrizes the nucleon-pion coupling in ChPT reveals how quark spin contributes to nucleon spin determines how nuclear properties vary with quark mass

$$\langle N, \mathbf{p}, \sigma' | \overline{\mathcal{Q}} \tau^a \gamma^\mu \gamma_5 \mathcal{Q} | N, \mathbf{p}, \sigma \rangle = g_A \overline{u}_{\sigma'}(\mathbf{p}) \tau^a \gamma^\mu \gamma_5 u_\sigma(\mathbf{p})$$

Determining the QCD prediction for this benchmark quantity will improve our understanding of how nuclear structure emerges from the underlying theory

Nuclear charges are typically accessed from Lattice QCD (LQCD) by constructing ratios of correlators

$$R(T,\tau) \equiv \frac{\langle \mathcal{O}(T)A(\tau)\overline{\mathcal{O}}(0)\rangle}{\langle \mathcal{O}(T)\overline{\mathcal{O}}(0)\rangle} = g_A + b_1 \left(e^{-\Delta E_1(T-\tau)} + e^{-\Delta E_1\tau}\right) + \cdots$$

At large separations excited state contamination is reduced but signal also degrades (Lepage, Parisi)

Nuclear charges are typically accessed from Lattice QCD (LQCD) by constructing ratios of correlators

 $R(T,\tau) \equiv \frac{\langle \mathcal{O}(T)A(\tau)\overline{\mathcal{O}}(0)\rangle}{\langle \mathcal{O}(T)\overline{\mathcal{O}}(0)\rangle} = g_A + b_1 \left(e^{-\Delta E_1(T-\tau)} + e^{-\Delta E_1\tau}\right) + \cdots$

At large separations excited state contamination is reduced but signal also degrades (Lepage, Parisi)

Can excited state contamination explain why lattice values of $\mathcal{G}A$ tend to be <u>below</u> the experimental value?

Nuclear charges are typically accessed from Lattice QCD (LQCD) by constructing ratios of correlators

 $R(T,\tau) \equiv \frac{\langle \mathcal{O}(T)A(\tau)\overline{\mathcal{O}}(0)\rangle}{\langle \mathcal{O}(T)\overline{\mathcal{O}}(0)\rangle} = g_A + b_1 \left(e^{-\Delta E_1(T-\tau)} + e^{-\Delta E_1\tau}\right) + \cdots$

At large separations excited state contamination is reduced but signal also degrades (Lepage, Parisi)

Can excited state contamination explain why lattice values of $\mathcal{G}A$ tend to be <u>below</u> the experimental value?

At leading order in Chiral Perturbation Theory (ChPT) the value of excited state contamination is **universal (interpolator-independent) and positive.** Brian Tiburzi, *Phys. Rev.* D91, 094510 (2015) Oliver Bär, arXiv:1606.09385

LO ChPT predicts positive excited state contamination

(Plot from P. Junnarkar)

LO ChPT predicts positive excited state contamination

(Plot from P. Junnarkar)

Suppose $M_{\pi}L = 4$ and physical pion masses... How many states are needed to get an accurate estimate of

 $R(T,\tau=T/2)?$

LO ChPT predicts positive excited state contamination

(Plot from P. Junnarkar)

Suppose $M_{\pi}L = 4$ and physical pion masses... How many states are needed to get an accurate estimate of

 $R(T, \tau = T/2)$?

Using the LO ChPT prediction		
$T(\mathrm{fm})$	$n_{\mathrm{states}} (5\%)$	$n_{\mathrm{states}} (3\%)$
2	2	0
1.5	2	5
1	7	10

Note: Oliver Bär (arXiv:1606.09385) uses fewer states to stay in LO ChPT range of validity

LO ChPT predicts positive excited state contamination

But data shows negative curvature (Plot from P. Junnarkar) Suppose $M_{\pi}L = 4$ and physical pion masses... How many states are needed to get an accurate estimate of

 $R(T,\tau=T/2)?$

Using the LO ChPT prediction		
$T(\mathrm{fm})$	$n_{\mathrm{states}} (5\%)$	$n_{\mathrm{states}} (3\%)$
2	2	0
1.5	2	5
1	7	10

Note: Oliver Bär (arXiv:1606.09385) uses fewer states to stay in LO ChPT range of validity

If higher finite-volume states are important, then the Roper could also play an important role.

We aim to estimate finite-volume energies and matrix elements using experimental scattering data

Finite-volume energies $\Delta E_n = E_n(L) - m_N + \mathcal{O}(e^{-M_{\pi}L})$

cubic, spatial volume (extent L) periodic boundary conditions $\vec{p} \in (2\pi/L)\mathbb{Z}^3$ L large enough to drop $e^{-M_{\pi}L}$

Finite-volume energies

$$\Delta E_n = E_n(L) - m_N + \mathcal{O}(e^{-M_\pi L})$$

Isospin and parity are good quantum numbers in finite-volume

$$I = 1/2, P = +$$

cubic, spatial volume (extent L) periodic boundary conditions $\vec{p} \in (2\pi/L)\mathbb{Z}^3$ L large enough to drop $e^{-M_{\pi}L}$

Can also project to a finite-volume irrep

 $G_1^+ = \left(J = \frac{1}{2}\right) \oplus \left(J = \frac{5}{2}\right) \oplus \cdots$

neglecting $\ell \geq 3 \rightarrow J \geq 5/2$ we find...

Finite-volume energies

$$\Delta E_n = E_n(L) - m_N + \mathcal{O}(e^{-M_\pi L})$$

Isospin and parity are good quantum numbers in finite-volume

$$I = 1/2, P = +$$

cubic, spatial volume (extent L) periodic boundary conditions $\vec{p} \in (2\pi/L)\mathbb{Z}^3$ L large enough to drop $e^{-M_{\pi}L}$

Can also project to a finite-volume irrep $G_1^+ = \left(J = \frac{1}{2}\right) \oplus \left(J = \frac{5}{2}\right) \oplus \cdots$

neglecting $\ell \geq 3 \rightarrow J \geq 5/2$ we find...

Single channel quantization condition

Beane et al., *Nucl. Phys.* A/4/, 55 (2005) Briceño, *Phys. Rev.* D 89, 074507 (2014) Li and Liu, Phys. Rev. D87, 014502 (2013) M. Göckeler et al., *Phys. Rev.* D86 094513 (2012)

Single channel quantization condition

 $\delta(E_n) + \phi(E_n, L)$

known geometric

Phase shift data is determined using experimental data from CERN, JLab, LAMPF, TRIUMF, PSI

The data base is described in Arndt et. al., *Phys. Rev.* C74, 045205 (2006)

The solution used here (WI08) is described in Workman et. al., *Phys. Rev.* C86, 035202 (2012)

The fits were performed to eigenvalues of the S matrix

$$R(T,\tau) = \frac{\langle \mathcal{O}(T)A(\tau)\overline{\mathcal{O}}(0)\rangle}{\langle \mathcal{O}(T)\overline{\mathcal{O}}(0)\rangle} = g_A + \mathcal{E}(T,\tau)$$

$$\mathcal{E}(T,\tau) = \sum_{n=1}^{\infty} b_n \left[e^{-\Delta E_n (T-\tau)} + e^{-\Delta E_n \tau} \right] + c_n e^{-\Delta E_n T} + \cdots$$

$$\Delta E_n = E_n(L) - m_N + \mathcal{O}(e^{-M_\pi L}) \quad \checkmark$$

$$R(T,\tau) = \frac{\langle \mathcal{O}(T)A(\tau)\overline{\mathcal{O}}(0)\rangle}{\langle \mathcal{O}(T)\overline{\mathcal{O}}(0)\rangle} = g_A + \mathcal{E}(T,\tau)$$

$$\mathcal{E}(T,\tau) = \sum_{n=1}^{\infty} b_n \left[e^{-\Delta E_n (T-\tau)} + e^{-\Delta E_n \tau} \right] + c_n e^{-\Delta E_n T} + \cdots$$

$$\Delta E_n = E_n(L) - m_N + \mathcal{O}(e^{-M_\pi L}) \quad \checkmark$$

We now turn to the coefficients of excited state exponentials

$$b_{n} = \frac{\langle 0|\mathcal{O}|n,L\rangle\langle n,L|A|N,L\rangle}{\langle 0|\mathcal{O}|N,L\rangle}$$

$$c_{n} = -\frac{\langle 0|\mathcal{O}|n,L\rangle\langle n,L|\overline{\mathcal{O}}|0\rangle}{\langle 0|\mathcal{O}|N,L\rangle\langle N,L|\overline{\mathcal{O}}|0\rangle} + \frac{\langle 0|\mathcal{O}|n,L\rangle\langle n,L|A|n,L\rangle\langle n,L|\overline{\mathcal{O}}|0\rangle}{\langle 0|\mathcal{O}|N,L\rangle\langle N,L|\overline{\mathcal{O}}|0\rangle}$$

Finite-volume matrix elements One can rewrite b_n using extensions of the Lellouch-Lüscher formalism

 $b_{n} = \frac{\langle 0 | \widetilde{\mathcal{O}} | n, L \rangle \langle n, L | \widetilde{A} | N, L \rangle}{\langle 0 | \widetilde{\mathcal{O}} | N, L \rangle}$

(Neglects higher angular momenta and three-particle states)

Lellouch and Lüscher, *Commun. Math. Phys.* 219, 31 (2001) Briceño, MTH, Walker-Loud, *Phys. Rev.* D91, 034501 (2015) Agadjanov et al., (2014), Nucl.Phys. B886, 1199 (2014). Briceño and MTH, *Phys. Rev.* D92, 074509 (2015)

In the free theory this counts the degeneracy of finite-volume states

(Neglects higher angular momenta and three-particle states)

Lellouch and Lüscher, *Commun. Math. Phys.* 219, 31 (2001) Briceño, MTH, Walker-Loud, *Phys. Rev.* D91, 034501 (2015) Agadjanov et al., (2014), Nucl.Phys. B886, 1199 (2014). Briceño and MTH, *Phys. Rev.* D92, 074509 (2015)

Can use this result to evaluate b_n in ChPT

 $\mathcal{C}(E_n,L)=\nu_n+\cdots$

Result agrees with Oliver Bär, arXiv:1606.09385

non-interacting result

 $4\pi^2 q^2 \left(\frac{\partial\phi}{\partial a}\right)^{-1}$

 $4\pi^2 q^3 \left(q \frac{\partial \phi}{\partial a} + p^* \frac{\partial \delta}{\partial n^*} \right)^{-1}$

 $\mathcal{C}(E_n, L)$ beyond LO ChPT

non-interacting result

$4\pi^2 q^2 \left(\frac{\partial\phi}{\partial q}\right)^{-1}$

 $4\pi^2 q^3 \left(q \frac{\partial \phi}{\partial a} + p^* \frac{\partial \delta}{\partial n^*} \right)^{-1}$

 $\mathcal{C}(E_n, L)$ beyond LO ChPT

non-interacting result

$4\pi^2 q^2 \left(\frac{\partial\phi}{\partial q}\right)^{-1}$

 $4\pi^2 q^3 \left(q \frac{\partial \phi}{\partial a} + p^* \frac{\partial \delta}{\partial n^*} \right)^{-1}$

non-interacting result

non-interacting result

interacting result

Places on the curve with physical meaning change

non-interacting result

interacting result

 $q^2 = \left[(p^*L)/(2\pi) \right]^2$

Lellouch-Lüscher curve is lowered ⁹ Places on the curve with physical meaning change

In principle this can be extracted from $N\nu\to N\pi$ experiment but present data is insufficient

Here we consider a (primitive) model of the matrix element

In principle this can be extracted from $_{N\nu \to N\pi}$ experiment but present data is insufficient

Here we consider a (primitive) model of the matrix element

In principle this can be extracted from $_{N\nu \to N\pi}$ experiment but present data is insufficient

Here we consider a (primitive) model of the matrix element

We approximate the amplitude and kernel to be on-shell and use experimental value

In principle this can be extracted from $_{N\nu \to N\pi}$ experiment but present data is insufficient

Here we consider a (primitive) model of the matrix element

In principle this can be extracted from $_{N\nu \to N\pi}$ experiment but present data is insufficient

Here we consider a (primitive) model of the matrix element

$$R(T,\tau) = \frac{\langle \mathcal{O}(T)A(\tau)\overline{\mathcal{O}}(0)\rangle}{\langle \mathcal{O}(T)\overline{\mathcal{O}}(0)\rangle} = g_A + \mathcal{E}(T,\tau)$$

$$\mathcal{E}(T,\tau) = \sum_{n=1}^{\infty} b_n \left[e^{-\Delta E_n (T-\tau)} + e^{-\Delta E_n \tau} \right] + c_n e^{-\Delta E_n T} + \cdots$$

$$R(T,\tau) = \frac{\langle \mathcal{O}(T)A(\tau)\overline{\mathcal{O}}(0)\rangle}{\langle \mathcal{O}(T)\overline{\mathcal{O}}(0)\rangle} = g_A + \mathcal{E}(T,\tau)$$

$$\mathcal{E}(T,\tau) = \sum_{n=1}^{\infty} b_n \left[e^{-\Delta E_n (T-\tau)} + e^{-\Delta E_n \tau} \right] + c_n e^{-\Delta E_n T} + \cdots$$

$$R(T,\tau) = \frac{\langle \mathcal{O}(T)A(\tau)\overline{\mathcal{O}}(0)\rangle}{\langle \mathcal{O}(T)\overline{\mathcal{O}}(0)\rangle} = g_A + \mathcal{E}(T,\tau)$$

$$\mathcal{E}(T,\tau) = \sum_{n=1}^{\infty} b_n \left[e^{-\Delta E_n (T-\tau)} + e^{-\Delta E_n \tau} \right] + c_n e^{-\Delta E_n T} + \cdots$$

$$R(T,\tau) = \frac{\langle \mathcal{O}(T)A(\tau)\overline{\mathcal{O}}(0)\rangle}{\langle \mathcal{O}(T)\overline{\mathcal{O}}(0)\rangle} = g_A + \mathcal{E}(T,\tau)$$

$$\mathcal{E}(T,\tau) = \sum_{n=1}^{\infty} b_n \left[e^{-\Delta E_n (T-\tau)} + e^{-\Delta E_n \tau} \right] + c_n e^{-\Delta E_n T} + \cdots$$

Summary

The Lüscher and Lellouch-Lüscher formalisms allow one to use experimental inputs to estimate excited state contamination

The Lellouch-Lüscher relation gives a great deal of insight about the coefficients including some surprises:

Summary

The Lüscher and Lellouch-Lüscher formalisms allow one to use experimental inputs to estimate excited state contamination

The Lellouch-Lüscher relation gives a great deal of insight about the coefficients including some surprises:

Amputated tree-level diagrams can be used to extract the same LO ChPT predictions given by standard one-loop diagrams

Interactions can shift the Lellouch-Lüscher factors dramatically due to the highly oscillatory function

A sign flip in the axial matrix element could lead to the observed sign of the excited state contamination

Conclusions

Many finite-volume states can be important in excited state contamination

It may be that the positive ChPT result is flipped by higher states

This emphasizes the importance of well-known techniques to reduce excited state contamination: e.g. variational method

Future work

Better estimate the infinite-volume matrix element

Include the effects of heavier than physical pions

Include the effects of three-particle states

$$R(T,\tau) = \frac{\langle \mathcal{O}(T)A(\tau)\overline{\mathcal{O}}(0)\rangle}{\langle \mathcal{O}(T)\overline{\mathcal{O}}(0)\rangle} = g_A + \mathcal{E}(T,\tau)$$

$$\mathcal{E}(T,\tau) = \sum_{n=1}^{\infty} b_n \left[e^{-\Delta E_n (T-\tau)} + e^{-\Delta E_n \tau} \right] + c_n e^{-\Delta E_n T} + \cdots$$

$$R(T,\tau) = \frac{\langle \mathcal{O}(T)A(\tau)\overline{\mathcal{O}}(0)\rangle}{\langle \mathcal{O}(T)\overline{\mathcal{O}}(0)\rangle} = g_A + \mathcal{E}(T,\tau)$$

$$\mathcal{E}(T,\tau) = \sum_{n=1}^{\infty} b_n \left[e^{-\Delta E_n (T-\tau)} + e^{-\Delta E_n \tau} \right] + c_n e^{-\Delta E_n T} + \cdots$$

$$R(T,\tau) = \frac{\langle \mathcal{O}(T)A(\tau)\overline{\mathcal{O}}(0)\rangle}{\langle \mathcal{O}(T)\overline{\mathcal{O}}(0)\rangle} = g_A + \mathcal{E}(T,\tau)$$

$$\mathcal{E}(T,\tau) = \sum_{n=1}^{\infty} b_n \left[e^{-\Delta E_n (T-\tau)} + e^{-\Delta E_n \tau} \right] + c_n e^{-\Delta E_n T} + \cdots$$

$$R(T,\tau) = \frac{\langle \mathcal{O}(T)A(\tau)\overline{\mathcal{O}}(0)\rangle}{\langle \mathcal{O}(T)\overline{\mathcal{O}}(0)\rangle} = g_A + \mathcal{E}(T,\tau)$$

$$\mathcal{E}(T,\tau) = \sum_{n=1}^{\infty} b_n \left[e^{-\Delta E_n(T-\tau)} + e^{-\Delta E_n\tau} \right] + c_n e^{-\Delta E_nT} + \cdots$$

