
Computing the density of states with
the global Hybrid Monte Carlo

Roberto Pellegrini 1

1School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK

In collaboration with B. Lucini, A.Rago, D. Vadacchino



Outline

1 The density of states

2 LLR for global updates

3 Application to the renormalization of the
EMT



Motivations

Monte-Carlo simulations are very effective for observables that can
be written as expectation values over a probability measure.

Ô = 〈O〉 (1)

They are not as efficient when they deal with free energies or
partition functions. 1

They are not suitable for system with complex action.

1P. de Forcrand, M. D’Elia, and M. Pepe, Phys.Rev.Lett.86, 1438



The density of states

Let us consider an euclidean quantum fied theory

Z =

∫
[Dφ]e−βS[φ] (2)

The density of states

ρ(S) =

∫
[Dφ]δ(S [φ]− S) (3)

Which leads to

〈O〉 =

∫
ρ(S)O(S)e−βS∫
ρ(S)e−βS

(4)



Analytic support function

The basic idea is to multiply the usual probability density by a
strongly localized function

The natural choice being a gaussian

〈〈f (S)〉〉a,S0,σ =
1

Z

∫ +∞

−∞
f (S)ρ(S)e−aSe−

(S−S0)
2

σ2 dS (5)

with

Z =

∫ +∞

−∞
ρ(S)e−aSe−

(S−S0)
2

σ2 dS (6)



We can choose f (S) = ∆S = S − S0

〈〈∆S〉〉a,S0,σ =
1

Z

∫ +∞

−∞
(S − S0)ρ(S)e−aSe−

(S−S0)
2

σ2 dS (7)

It is possible to expand the r.h.s. in power of σ

〈〈∆S〉〉a,S0,σ = cσ2

(
dρ

dS

∣∣∣∣
S0

− aρ(S0)

)
+O(σ6) (8)



Fundamental relation

Fundamental relation between 〈〈∆S〉〉a,S0,σ and the
coefficients a

〈〈∆S〉〉a,S0,σ = 0→ a =
d log(ρ(S))

ds

∣∣∣∣
S0

+O(σ5) (9)

The DoS can be constructed from the a coefficients

ρ(S) = ρ0

(
N−1∏
k=1

eakσ

)
eaN (S−SN )+O(σ5) (10)

The problem to compute the DoS is reduced to finding the root of
〈〈∆S〉〉a,S0,σ solved by Robbins-Monro 1952



The probability weight

In order to compute 〈〈∆S〉〉a,S0,σ the weight that needs to be
sampled is

W (S [φ] ,S0, σ, a) ∝ e−aSe−
(S−S0)

2

σ2 = e−U[φ,S0,σ,a] (11)

Definition of a potential energy

U [φ, S0, σ, a] =
(S [φ]− S0)2

σ2
+ aS [φ] (12)

Which is analytic and can be used to define the Hamiltonian
evolution of the HMC.



The HMC

The Hamiltonian is given by

H [pi , φi ] =
∑
i

pipi
2

+ aS [φ] +
(S [φ]− S0)2

σ2
, (13)

where S is the usual action.

The force

fi = − ∂H
∂φi

= − ∂S
∂φi

(
a +

2

σ2
(S − S0)

)
(14)

The Hamiltonian evolution can be performed with the standard
leapfrog method.



The HMC

Usual metropolis step at the end of the Hamiltonian evolution

The acceptance can be tuned to be as high as wanted changing the
integration step

During thermalization the forces are very big while they became
much smaller once the action is close to S0.

The integration needs to be adaptive

Can be combined with replica exchange method, see next seminar by
B. Lucini



Application to the energy momentum tensor
in Yang-Mills

The energy momentum tensor Tµν is the current of the traslational
symmetry.

When the regulator of the theory preserves traslational invariance it
does not renormalize.

In pure gauge theory is given by

Tµν =
1

g2

{
FµαFνα −

1

4
δµνFαβFαβ

}
(15)

On the lattice translational symmetry is broken and it needs to be
renormalized

Tµν = ZT

{
T [1]
µν + ztT

[3]
µν + zs

(
T [2]
µν − 〈T [2]

µν〉
)}

(16)



The energy momentum tensor on the lattice

Using shifted boundary condition

A(L0, x) = A(0, x− L0ξ) (17)

it is possible to write Ward Identities2 that fix the normalization
constant

Determination of ZT

ZT (β) =
f (β, L0, ξ − ak̂L0)− f (β, L0, ξ + ak̂L0)

2a

1

〈T [1]
0k (β)〉ξ

(18)

where

f (β, L0, ξ) =
log
∫
dSe(−βS)ρ(S)

V
+ c (19)

2L. Giusti and M. Pepe Phys. Rev. D 91, 114504



The DoS in SU(2)

Computation time 48 hours per point, but covers a range of β.

Vol = 123x3 and shift =
(
4
3
, 0, 0

)
,
(
2
3
, 0, 0

)



The probability density in SU(2)

∆f = 1
V

[
log
(∫

dSe−βSρξ(S)
)
− log

(∫
dSe−βSρξ′(S)

)]
= 0.002319(21)

β=2.36869, vol = 123x3 and shift =
(
4
3
, 0, 0

)
,
(
2
3
, 0, 0

)



Conclusions

We presented an algorithm to compute the DoS using the global
Hybrid Montecarlo

The method seems to be very efficient in pure SU(N) Yang-Mills

Computations of the energy momentum tensor and thermodynamics
properties are in progress
Future developments

Inclusion of fermions which is straightforward
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