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There is no doubt that the SM is incomplete since we cannot even account for a number
of basic observations:

• Neutrino physics: Only recently it has been possible to have some definite an-
swers about properties of neutrinos. We now know that they have a tiny mass,
which can be naturally accommodated in extensions of the SM, featuring for ex-
ample a see-saw mechanism. We do not yet know if the neutrinos have a Dirac
or a Majorana nature.

• Origin of bright and dark mass: Leptons, quarks and the gauge bosons medi-
ating the weak interactions possess a rest mass. Within the SM this mass can be
accounted for by the Higgs mechanism, which constitutes the electroweak sym-
metry breaking sector of the SM. However, the associated Higgs particle has not
yet been discovered. Besides, the SM cannot account for the observed large frac-
tion of dark mass of the universe. What is interesting is that in the universe the
dark matter is about five times more abundant than the known baryonic matter,
i.e. bright matter. We do not know why the ratio of dark to bright matter is of
order unity.

• Matter-antimatter asymmetry: From our everyday experience we know that
there is very little bright antimatter in the universe. The SM fails to predict the
observed excess of matter.

These arguments do not imply that the SM is necessarily incorrect, but it must be
extended to answer any of the questions raised above. The truth is that we do not have
an answer to the basic question: What lies beneath the SM?

A number of possible generalizations have been conceived (see [2, 3, 4, 5, 6, 7] for
reviews). Such extensions are introduced on the base of one or more guiding principles
or prejudices. Two technical reviews are [8, 9].

In the models we will consider here the electroweak symmetry breaks via a fermion
bilinear condensate. The Higgs sector of the SM becomes an e�ective description of a
more fundamental fermionic theory. This is similar to the Ginzburg-Landau theory of
superconductivity. If the force underlying the fermion condensate driving electroweak
symmetry breaking is due to a strongly interacting gauge theory these models are
termed Technicolor (TC).

TC, in brief, is an additional non-abelian and strongly interacting gauge theory
augmented with (techni)fermions transforming under a given representation of the
gauge group. The Higgs Lagrangian is replaced by a suitable new fermion sector
interacting strongly via a new gauge interaction (technicolor). Schematically:

LHiggs ⇤ �
1
4

Fµ⇤Fµ⇤ + iQ̄�µDµQ + . . . , (1.14)

where, to be as general as possible, we have left unspecified the underlying nonabelian
gauge group and the associated technifermion (Q) representation. The dots represent
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quarks and leptons without introducing Flavor Changing Neutral Currents (FCNC)s
at the tree level. The Higgs sector of the SM possesses, when the gauge couplings are
switched o�, an SU(2)L ⇤ SU(2)R symmetry. The full symmetry group can be made
explicit when re-writing the Higgs doublet field

H =
1⌦
2

⇤
⇤2 + i⇤1
⌅ � i⇤3

⌅
(1.1)

as the right column of the following two by two matrix:

1⌦
2

�
⌅ + i⌦⇧ · ⌦⇤⇥ ⇧M . (1.2)

The first column can be identified with the column vector i⇧2H⌅ while the second with
H. ⇧2 is the second Pauli matrix. The SU(2)L⇤SU(2)R group acts linearly on M according
to:

M⌃ gLMg†R and gL/R � SU(2)L/R . (1.3)

One can verify that:

M
�
1 � ⇧3⇥

2
= (0 , H) . M

�
1 + ⇧3⇥

2
= (i ⇧2H⌅ , 0) . (1.4)

The SU(2)L symmetry is gauged by introducing the weak gauge bosons Wa with a =
1, 2, 3. The hypercharge generator is taken to be the third generator of SU(2)R. The
ordinary covariant derivative acting on the Higgs, in the present notation, is:

DµM =  µM � i g WµM + i g⌥M Bµ , with Wµ =Wa
µ
⇧a

2
, Bµ = Bµ

⇧3

2
. (1.5)

The Higgs Lagrangian is

L =
1
2

Tr
⇧
DµM†DµM

⌃
�

m2
M

2
Tr
⇧
M†M

⌃
� �

4
Tr
⇧
M†M

⌃2
. (1.6)

At this point one assumes that the mass squared of the Higgs field is negative and this
leads to the electroweak symmetry breaking. Except for the Higgs mass term the other
SM operators have dimensionless couplings meaning that the natural scale for the SM
is encoded in the Higgs mass1. We recall that the Higgs Lagrangian has a familiar
form since it is identical to the linear ⌅ Lagrangian which was introduced long ago to
describe chiral symmetry breaking in QCD with two light flavors.

1The mass of the proton is due mainly to strong interactions, however its value cannot be determined
within QCD since the associated renormalization group invariant scale must be fixed to an hadronic
observable.

5

quarks and leptons without introducing Flavor Changing Neutral Currents (FCNC)s
at the tree level. The Higgs sector of the SM possesses, when the gauge couplings are
switched o�, an SU(2)L ⇤ SU(2)R symmetry. The full symmetry group can be made
explicit when re-writing the Higgs doublet field

H =
1⌦
2

⇤
⇤2 + i⇤1
⌅ � i⇤3

⌅
(1.1)

as the right column of the following two by two matrix:

1⌦
2

�
⌅ + i⌦⇧ · ⌦⇤⇥ ⇧M . (1.2)

The first column can be identified with the column vector i⇧2H⌅ while the second with
H. ⇧2 is the second Pauli matrix. The SU(2)L⇤SU(2)R group acts linearly on M according
to:

M⌃ gLMg†R and gL/R � SU(2)L/R . (1.3)

One can verify that:

M
�
1 � ⇧3⇥

2
= (0 , H) . M

�
1 + ⇧3⇥

2
= (i ⇧2H⌅ , 0) . (1.4)

The SU(2)L symmetry is gauged by introducing the weak gauge bosons Wa with a =
1, 2, 3. The hypercharge generator is taken to be the third generator of SU(2)R. The
ordinary covariant derivative acting on the Higgs, in the present notation, is:

DµM =  µM � i g WµM + i g⌥M Bµ , with Wµ =Wa
µ
⇧a

2
, Bµ = Bµ

⇧3

2
. (1.5)

The Higgs Lagrangian is

L =
1
2

Tr
⇧
DµM†DµM

⌃
�

m2
M

2
Tr
⇧
M†M

⌃
� �

4
Tr
⇧
M†M

⌃2
. (1.6)

At this point one assumes that the mass squared of the Higgs field is negative and this
leads to the electroweak symmetry breaking. Except for the Higgs mass term the other
SM operators have dimensionless couplings meaning that the natural scale for the SM
is encoded in the Higgs mass1. We recall that the Higgs Lagrangian has a familiar
form since it is identical to the linear ⌅ Lagrangian which was introduced long ago to
describe chiral symmetry breaking in QCD with two light flavors.

1The mass of the proton is due mainly to strong interactions, however its value cannot be determined
within QCD since the associated renormalization group invariant scale must be fixed to an hadronic
observable.

5

quarks and leptons without introducing Flavor Changing Neutral Currents (FCNC)s
at the tree level. The Higgs sector of the SM possesses, when the gauge couplings are
switched o�, an SU(2)L ⇤ SU(2)R symmetry. The full symmetry group can be made
explicit when re-writing the Higgs doublet field

H =
1⌦
2

⇤
⇤2 + i⇤1
⌅ � i⇤3

⌅
(1.1)

as the right column of the following two by two matrix:

1⌦
2

�
⌅ + i⌦⇧ · ⌦⇤⇥ ⇧M . (1.2)

The first column can be identified with the column vector i⇧2H⌅ while the second with
H. ⇧2 is the second Pauli matrix. The SU(2)L⇤SU(2)R group acts linearly on M according
to:

M⌃ gLMg†R and gL/R � SU(2)L/R . (1.3)

One can verify that:

M
�
1 � ⇧3⇥

2
= (0 , H) . M

�
1 + ⇧3⇥

2
= (i ⇧2H⌅ , 0) . (1.4)

The SU(2)L symmetry is gauged by introducing the weak gauge bosons Wa with a =
1, 2, 3. The hypercharge generator is taken to be the third generator of SU(2)R. The
ordinary covariant derivative acting on the Higgs, in the present notation, is:

DµM =  µM � i g WµM + i g⌥M Bµ , with Wµ =Wa
µ
⇧a

2
, Bµ = Bµ

⇧3

2
. (1.5)

The Higgs Lagrangian is

L =
1
2

Tr
⇧
DµM†DµM

⌃
�

m2
M

2
Tr
⇧
M†M

⌃
� �

4
Tr
⇧
M†M

⌃2
. (1.6)

At this point one assumes that the mass squared of the Higgs field is negative and this
leads to the electroweak symmetry breaking. Except for the Higgs mass term the other
SM operators have dimensionless couplings meaning that the natural scale for the SM
is encoded in the Higgs mass1. We recall that the Higgs Lagrangian has a familiar
form since it is identical to the linear ⌅ Lagrangian which was introduced long ago to
describe chiral symmetry breaking in QCD with two light flavors.

1The mass of the proton is due mainly to strong interactions, however its value cannot be determined
within QCD since the associated renormalization group invariant scale must be fixed to an hadronic
observable.

5

quarks and leptons without introducing Flavor Changing Neutral Currents (FCNC)s
at the tree level. The Higgs sector of the SM possesses, when the gauge couplings are
switched o�, an SU(2)L ⇤ SU(2)R symmetry. The full symmetry group can be made
explicit when re-writing the Higgs doublet field

H =
1⌦
2

⇤
⇤2 + i⇤1
⌅ � i⇤3

⌅
(1.1)

as the right column of the following two by two matrix:

1⌦
2

�
⌅ + i⌦⇧ · ⌦⇤⇥ ⇧M . (1.2)

The first column can be identified with the column vector i⇧2H⌅ while the second with
H. ⇧2 is the second Pauli matrix. The SU(2)L⇤SU(2)R group acts linearly on M according
to:

M⌃ gLMg†R and gL/R � SU(2)L/R . (1.3)

One can verify that:

M
�
1 � ⇧3⇥

2
= (0 , H) . M

�
1 + ⇧3⇥

2
= (i ⇧2H⌅ , 0) . (1.4)

The SU(2)L symmetry is gauged by introducing the weak gauge bosons Wa with a =
1, 2, 3. The hypercharge generator is taken to be the third generator of SU(2)R. The
ordinary covariant derivative acting on the Higgs, in the present notation, is:

DµM =  µM � i g WµM + i g⌥M Bµ , with Wµ =Wa
µ
⇧a

2
, Bµ = Bµ

⇧3

2
. (1.5)

The Higgs Lagrangian is

L =
1
2

Tr
⇧
DµM†DµM

⌃
�

m2
M

2
Tr
⇧
M†M

⌃
� �

4
Tr
⇧
M†M

⌃2
. (1.6)

At this point one assumes that the mass squared of the Higgs field is negative and this
leads to the electroweak symmetry breaking. Except for the Higgs mass term the other
SM operators have dimensionless couplings meaning that the natural scale for the SM
is encoded in the Higgs mass1. We recall that the Higgs Lagrangian has a familiar
form since it is identical to the linear ⌅ Lagrangian which was introduced long ago to
describe chiral symmetry breaking in QCD with two light flavors.

1The mass of the proton is due mainly to strong interactions, however its value cannot be determined
within QCD since the associated renormalization group invariant scale must be fixed to an hadronic
observable.

5

strongly coupled gauge theory

fermions (Q) in gauge group reps in flavor/color space:

                                                                     light scalar separated from

                                  unlike QCD                 2-3 TeV resonance spectrum

                                  requires BSM field theory tools for LHC apps
                                  in semi-realistic setting

spontaneous symmetry breaking
Higgs mechanism

What is our composite Higgs paradigm?

elementary scalar? 



We want to understand: 
light scalar separated from 2-3 TeV resonance spectrum 

multiple scalars in  models close to CW? 

Resonance spectrum? 

what is the eta’?     

entangled scalar-goldstone dynamics  sigma model or dilaton? 
how to decouple and isolate the light scalar? 

bridge between UV and IR scale? 
scale-dependent gauge coupling - high precision 

predictions without UV completions? 
related phenomenology 

consistent EW embedding  ➞  dark matter 

BSM needs new lattice tools  ➞ RMT, ππ-scattering, … 

scaled up QCD cannot do the job
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Figure: Preliminary chiral extrapolation of Fp . The calculation is
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V= 323⇥64 for the rest, using 200�300 configurations. Hadron
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well as for the P-wave. According to figure 2a in [97], the resulting fit yields
δ0
0(sA) ≃ 87◦. In view of the relatively large errors attached to the phase shift

in [96], this result must come with a sizable uncertainty and may thus not
be inconsistent with the range obtained in [80], but it is on the high side.
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Figure 9: Behaviour of δ0
0 below KK̄ threshold

The parametrizations of Kamiński, Peláez and Ynduráin [88] yield even
higher values: δ0

0(sA) = 90.7◦ ± 0.7 (A), δ0
0(sA) = 90.5◦ ± 0.7 (B). In view of

the remarkably small error, these results disagree with those obtained from
δ1
1(sA) − δ0

0(sA) [80] or from a Roy equation fit to the data of [94]. One of
the reasons for arriving at such a high value is that the authors include the
result for the phase difference δ0

0(M
2
K)− δ2

0(M
2
K) obtained from K → ππ [53]

in their fitting procedure. This pulls the value of δ0
0(sA) up. The response of

the Roy equations to this change in the input value for δ0
0(sA) is an increase in

δ0
0(M

2
K)−δ2

0(M
2
K) of 2◦. The fit obtained in KPYIII yields a somewhat larger

shift: the value for δ0
0(M

2
K) − δ2

0(M
2
K) is 50.9◦ ± 1.2◦, higher than our result

by 3.2◦. The difference is produced by the kink mentioned in the preceding
section, which can also be seen in figure 9. The kink generates a violation
of causality and hence of the Roy equations: while our amplitude or the
one of Kamiński, Leśniak and Loiseau [97] do represent decent approximate
solutions of the Roy equations, the one in KPYIII does not: in the region
between 0.7 and 1 GeV, the difference between input and output for the real
parts of the S-waves is of order 0.1. Quite irrespective of these details, the
increase in the phase difference δ0

0(M
2
K) − δ2

0(M
2
K) produced by an increase
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I add a remark concerning the model of Hanhart, Peláez and Ríos [32], who apply
the inverse amplitude method to improve the one loop approximation to the chiral
perturbation series of SU(2)×SU(2). In the original formulation of the model, the chiral
expansion t00(s) = t2(s)+t4(s)+ . . . is unitarized with t00(s) = t2(s)/{1−t4(s)/t2(s)}, but
this recipe fails in the vicinity of the Adler zero, because the term t4(s) does not vanish
there. The deficiency is readily cured. It suffices to replace the IAM formula with

t00(s) =
t̃2(s)

1− t̃4(s)/t̃2(s)
, t̃2(s) = t2(s)− t2(sA4) , t̃4(s) = t4(s)+ t2(sA4) , (6)

where sA4 is the position of the Adler zero in one loop approximation. Since t2(sA4)
represents a term of O(p4), the chiral expansion of (6) reproduces the one loop approx-
imation of χPT, also in the vicinity of the Adler zero. A similar recipe is used in [32].
The model exclusively involves the coupling constants Fπ ,ℓ1, . . . ,ℓ4 of the effective

Lagrangian. As discussed above, ℓ3 and ℓ4 are known quite well; ℓ1 and ℓ2 can be
determined on phenomenological grounds [11]. The result for the phase shift obtained
by inserting the numerical values in the above formula is indicated on the right panel of
Fig. 4. This shows that the model yields a decent approximation only below 500 MeV.
The parametrization used by Hanhart eta al. [32] is better, because these authors treat the
coupling constants ℓ1 and ℓ2 as free parameters. This extends the range of energies where
the IAM parametrization makes sense, but since the model does not account for the sharp
increase in the phase towardsKK̄ threshold, it can at best give a semi-quantitative picture
of the σ . For the parameter values adopted in [32], the zero of the denominator in (6)
occurs at 444(6) - i 218(10) MeV: the mass is OK, but the width is too low by 100 MeV.
Inserting the observed values of ℓ1 and ℓ2, the zero moves to 413(12) - i 269(12) MeV:
now the width is OK, but the mass is too low.
ad 3. Finally, I turn to the contributions of the third category: higher energies and

other partial waves. Among these, the one from the P-wave, for example, is by no means
negligible, but, as mentioned above, this wave is known very well. In fact, in the vicinity
of the zero of S00(s), the sum of the contributions of this category can be worked out
quite accurately. In [1], we estimated the net uncertainty in the pole position from this
source at ± 4 ± i 6 MeV. As a check, we can simply replace our central representation
for the contributions of category 3 by the one in [30], retaining our own representation
only for the remainder. The operation shifts the pole position by - 0.6 - i 1.2 MeV, well
within the estimated range.

CONCLUSION

Adding the errors up in square, the result for the pole position becomes [1]
√
sσ = 441+16

−8 − i 272+9
−12.5 MeV . (7)

The error bars account for all sources of uncertainty and are an order of magnitude
smaller than for the crude estimate √sσ = (400 - 1200) - i (250 - 500) MeV quoted by
the Particle Data Group [25]. The dispersive representation of the S-matrix element also

Model independent determination of the σ pole February 23, 2013 9
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by inserting the numerical values in the above formula is indicated on the right panel of
Fig. 4. This shows that the model yields a decent approximation only below 500 MeV.
The parametrization used by Hanhart eta al. [32] is better, because these authors treat the
coupling constants ℓ1 and ℓ2 as free parameters. This extends the range of energies where
the IAM parametrization makes sense, but since the model does not account for the sharp
increase in the phase towardsKK̄ threshold, it can at best give a semi-quantitative picture
of the σ . For the parameter values adopted in [32], the zero of the denominator in (6)
occurs at 444(6) - i 218(10) MeV: the mass is OK, but the width is too low by 100 MeV.
Inserting the observed values of ℓ1 and ℓ2, the zero moves to 413(12) - i 269(12) MeV:
now the width is OK, but the mass is too low.
ad 3. Finally, I turn to the contributions of the third category: higher energies and

other partial waves. Among these, the one from the P-wave, for example, is by no means
negligible, but, as mentioned above, this wave is known very well. In fact, in the vicinity
of the zero of S00(s), the sum of the contributions of this category can be worked out
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source at ± 4 ± i 6 MeV. As a check, we can simply replace our central representation
for the contributions of category 3 by the one in [30], retaining our own representation
only for the remainder. The operation shifts the pole position by - 0.6 - i 1.2 MeV, well
within the estimated range.

CONCLUSION

Adding the errors up in square, the result for the pole position becomes [1]
√
sσ = 441+16
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The error bars account for all sources of uncertainty and are an order of magnitude
smaller than for the crude estimate √sσ = (400 - 1200) - i (250 - 500) MeV quoted by
the Particle Data Group [25]. The dispersive representation of the S-matrix element also
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Probing technicolor theories with staggered fermions Kieran Holland

Figure 1: The conformal window for SU(N) gauge theories with Nf techniquarks in various representations,

from [3]. The shaded regions are the windows, for fundamental (gray), 2-index antisymmetric (blue), 2-index

symmetric (red) and adjoint (green) representations.

1. Introduction

The LHC will probe the mechanism of electroweak symmetry breaking. A very attractive

alternative to the standard Higgs mechanism, with fundamental scalars, involves new strongly-

interacting gauge theories, known as technicolor [1, 2]. Such models avoid difficulties of theories

with scalars, such as triviality and fine-tuning. Chiral symmetry must be spontaneously broken in

a technicolor theory, to provide the technipions which generate the W± and Z masses and break

electroweak symmetry. Although this duplication of QCD is appealing, precise electroweak mea-

surements have made it difficult to find a viable candidate theory. It is also necessary to enlarge the

theory (extended technicolor) to generate quark masses, without generating large flavor-changing

neutral currents, which is challenging.

Technicolor theories have lately enjoyed a resurgence, due to the exploration of various tech-

niquark representations [3]. Feasible candidates have fewer new flavors, reducing tension with

electroweak constraints. If a theory is almost conformal, it is possible this generates additional

energy scales, which could help in building the extended technicolor sector. There are estimates

of which theories are conformal for various representations, shown in Fig. 1. For SU(N) gauge

theory, if the number of techniquark flavors is less than some critical number, conformal and chiral

symmetries are broken and the theory is QCD-like. For future model-building, it is crucial to go be-

yond these estimates and determine precisely where the conformal windows are. There have been

a number of recent lattice simulations of technicolor theories, attempting to locate the conformal

windows for various representations [4, 5, 6, 7, 8].

2. Dirac eigenvalues and chiral symmetry

The connection between the eigenvalues ! of the Dirac operator and chiral symmetry breaking

2

4 lattice BSM theories with light scalars and SU(3) color:

 SCGT Theory Space 
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• mass of the light composite scalar
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Conformal:

Exhibit zero in beta function

measure the scaling violation exponent ω  

show that mass deformed spectroscopy works 
including conformal scaling violation

Chiral Symmetry Breaking:

Show that F·L ~ √Nf  
 
drive the running coupling g(L) into this volume 
this excludes then any zeros in the beta function

decouple light scalar in p-regime PT and
drive to epsilon regime and RMT

our homework assignments:

4 lattice BSM theories with light scalars and SU(3) color:
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drive the running coupling g(L) into this volume 
this excludes then any zeros in the beta function

decouple light scalar in p-regime PT and
drive to epsilon regime and RMT

our homework assignments:

before we get carried away with BSM: 

I come to bury Caesar, not to praise him. 

(spoken by Marc Antony) 

4 lattice BSM theories with light scalars and SU(3) color:
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intriguing correlation 
between decreasing beta-
function and decreasing 
mass of the light scalar 

approach to the conformal window 

IRFP Ref. [1]

SU(4)+8 PNGB 
conformal?



in our new  Nf=12 work:             Dani Nogradi  Tue 14:00  BSM  Bldg. 67 Room 1027 

● interpolations is eliminated  by tuned targeting in the previously published 
range in Ref. 1 of our paper 

● statistics with per mille accuracy in the renormalized coupling 

●  large volumes are used for correct continuum extrapolation 
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Nf=4 

SU(4)⊗SU(4)➝SU(4) 
massless fermions chiSB 

rotated vacuum  
with EW quantum numbers 

zero mass PNGB (composite Higgs)

Nf =4 added 

to make partial compositeness work with large 
anomalous dimension for baryon operator: 

extra 4 flavors (or 8?) to keep model near-conformal 
fermions are massive 

near-conformal σ-like light scalar?

will require intriguing and complicated dynamics  
with consistency requirements 
is the focus on PNGB or light σ-like scalar?

in comparison, near conformal σ-like light scalar 
of sextet model is simple in the 500 GeV range 
tunable?  

relying on large mass anomalous dimension  
for fermion mass generation and flavor problem

Comparing near conformal light Higgs and PNGB with partial compositeness  
two USQCD directions

4 lattice BSM theories with light scalars and SU(3) color:
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Figure 1: Local fields Ot(x) constructed at flow time t > 0 depend on the fundamental field variables in a
region of space-time approximately 2

√
8t wide (red area). Further away from the point x, the sensitivity to

the basic fields decreases like a Gaussian and very rapidly becomes totally negligible.

The smoothing property of the gradient flow and the associated quark flow implies that correla-
tion functions of fields at non-zero flow times have no short-distance singularities. Renormalization
is nevertheless required, but turns out to be extremely simple. Explicitly, if Ot(x) is a bare, gauge-
invariant composite field at flow time t > 0 of degree n and n̄ in the quark and antiquark fields, the
renormalized field is given by

OR,t = (Zχ)
1
2 (n+n̄)Ot , (2.9)

where the renormalization constant Zχ is independent of t. In particular, the field (2.7) does not
require renormalization and the chiral densities (2.8) renormalize with the same factor Zχ .

The proof of these statements [2, 3] is based on an exact representation of the correlation
functions through a local field theory in 4+1 dimensions, the extra dimension being the flow time.
Zinn–Justin and Zwanziger [8] introduced the representation many years ago in their work on the
renormalization of the Langevin equation. In the pure gauge theory, the latter actually coincides
with the flow equation (2.1) except for the fact that it includes a noise term, which complicates the
situation and requires a renormalization of the Langevin time, for example.

3. Chiral condensate

In lattice QCD, the expectation value of the scalar density ūu+ d̄d of the up and down quarks
diverges like the second or third inverse power of the lattice spacing when the continuum limit is
taken. The divergent terms are proportional to the light-quark masses if the lattice theory preserves
chiral symmetry, but also in these cases their subtraction tends to give rise to important significance
losses or even some conceptual issues. Using the gradient flow, this problem can now be elegantly
bypassed [3].

3.1 Flow-time dependent condensate

Since the flow equations are chirally invariant, the quark field at non-zero flow times, χ(t,x),
transforms in the same way as the fundamental field ψ(x) under global chiral rotations. In particu-
lar, the light-quark chiral densities

Srst ±Prst , r,s ∈ {u,d}, (3.1)
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scale-dependent coupling in p-regime   
bridge between UV scale and IR scale
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Non-parallel slopes: fan out structure
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some outstanding spectroscopy problems: 

1. effective low energy theory for Goldstone 
dynamics coupled to the low mass scalar 

p-regime: nonlinear sigma model or dilaton? 

crossover from p-regime to epsilon regime and 
RMT will be more effective in decoupling the light 
scalar 

2. effect of slow topology on the analysis 
ChiPT at fixed topology?
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 idea for improvement: 
•  use the gauge configurations  
   generated with sea fermions
•  taste breaking makes chiPT analysis
    complicated 
•  in the analysis use valence Dirac   
   operator with gauge links on the  
   gradient flow 
•  taste symmetry is restored in 
   valence spectrum
•  Mixed Action analysis should agree 
   with original standard analysis when 
   cutoff is removed: this is OK!

new analysis in crossover 
and RMT regime with 
mixed action on gradient 
flow

Damgaard and Fukaya

JHEP01(2009)052
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Figure 2: The chiral condensate (top) and Dirac spectral density (bottom) for the case with
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The chiral condensate         RMT spectrum t=0
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The chiral condensate   mass anomalous dimension
Del Debbio-Zwicky and collaborators, Patella,
Boulder group with lead from Anna Hasenfratz
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the chiral limit (or the physical up and down quark masses) also
makes the tunneling of topological charge a rare event, because of
the suppression of the fermion determinant for large topological
charges.

During the last decade, (i) and (ii) have been solved by the re-
alization of exact chiral symmetry on the lattice, with which the
topological charge is uniquely defined at any finite lattice spac-
ing by counting the number of fermionic zero-modes. (For recent
studies respecting the exact chiral symmetry, we refer [4,5].) How-
ever, (iii) remains insurmountable, since the correct sampling of
topology becomes increasingly more difficult towards realistic sim-
ulation with lighter quarks and finer lattices. A plausible solution
is to perform QCD simulations in a fixed topological sector and to
extract χt from local topological fluctuations. In [6] (see also [7]),
a general formula to transcribe any observable measured at a fixed
topological charge to its value in the θ vacuum is derived. As an
application, a new method to calculate χt is also proposed.

In this Letter, we use this method to precisely calculate χt
in two-flavor lattice QCD with exact chiral symmetry. The results
are compared with the prediction from chiral perturbation theory
(χPT) [8]

χt = mqΣ

N f
+O

(
m2

q
)
, (1)

for N f flavors of sea quarks with mass mq . The chiral conden-
sate Σ can be determined independently, e.g., from the low-lying
eigenvalues of the Dirac operator [9,10]. Therefore, the comparison
provides a critical test of the lattice approach to study the QCD
vacuum in the chiral regime.

A two-point function of the topological charge density ρ(x)
calculated in a finite volume Ω at a given topological charge Q
behaves as [6]

lim
|x|→∞

〈
ρ(x)ρ(0)

〉
Q = 1

Ω

(
Q 2

Ω
− χt − c4

2χtΩ

)
+O

(
Ω−3), (2)

where c4 = −(⟨Q 4⟩−3⟨Q 2⟩2)/Ω . The expectation value ⟨· · ·⟩Q de-
notes an average in a given topological sector Q . The correlation
does not vanish even for large separations, because of the violation
of the clustering property at fixed topological charge. We empha-
size that the derivation of (2) relies only on modest assumptions
such as ⟨Q 2⟩ ≫ 1 and Q ≪ ⟨Q 2⟩, which are the conditions to ap-
ply the saddle point expansion in the Fourier transform from a
fixed θ to a fixed Q . Except for these conditions, the formula is
model independent.

We consider, in particular, two spatial sub-volumes at t1 and t2,
for which the correlator is defined as

C(t1 − t2) ≡
〈
Q (t1)Q (t2)

〉
=

∑

x⃗1,x⃗2

〈
ρ(x1)ρ(x2)

〉
, (3)

where the summations run over the spatial sites x⃗1 and x⃗2 at t1
and t2, respectively. Its plateau at large |t1 − t2| can be used to
extract χt , provided that |c4| ≪ 2χ2

t Ω .
In order to preserve the exact chiral symmetry, which is es-

sential for the definition of the topological charge, we employ the
overlap-Dirac operator [12,13]

D(mq) =
(
m0 + mq

2

)
+

(
m0 − mq

2

)
γ5 sgn

[
HW (−m0)

]
, (4)

with mass mq . The kernel operator HW (−m0) is the conventional
Wilson–Dirac operator with a large negative mass term −m0.

In place of the topological charge density ρ(x) (and ρ(0))
in (2), we use mqP0(x) (and mqP0(0)), that were shown to give
the same asymptotic constant as (2) [6] (the original suggestion
is in [11]), where P0(x) is the flavor singlet pseudo-scalar den-
sity P0(x) ≡ 1

N f

∑N f
f =1 ψ̄ f (x)γ5[1 − aD(0)/(2m0)]ψ f (x). The cor-

Fig. 1. A schematic diagram for the time-correlation function of the flavor singlet
operator P0(x). Each solid line denotes the valence quark propagator.

relator Cη′ (t) ≡ ∑
x⃗⟨P0(x)P0(0)⟩ contains a connected and a dis-

connected diagram as shown in Fig. 1. If we pick the discon-
nected piece and identify a “topological charge density”, it can be
written as ρ1(x) = mq tr[γ5(Dc + mq)

−1
x,x ], where Dc is a chirally-

symmetric (γ5Dc + Dcγ5 = 0) nonlocal operator, relating to D(0)
by Dc = [1 − aD(0)/(2m0)]−1D(0) [14]. Integrated over the en-
tire lattice volume, ρ1(x) reduces to the number of fermionic
zero-modes, and thus has the necessary property for the topolog-
ical charge density. This implies that the correlator ⟨ρ1(x)ρ1(0)⟩
has the same asymptotic constant as (2). However, the correlator
⟨mqP0(x)mqP0(0)⟩ approaches the constant with the rate governed
by the η′ mass, e−mη′ |x| , which is much faster than e−mπ |x| appear-
ing in ⟨ρ1(x)ρ1(0)⟩.

Simulations are carried out for two-flavor (N f = 2) QCD
on a 163 × 32 lattice at a lattice spacing ∼ 0.12 fm. For the
gluon part, the Iwasaki action is used at β = 2.30 together
with unphysical Wilson fermions and associated twisted-mass
ghosts [15]. The unphysical degrees of freedom generate a fac-
tor det[H2

W (−m0)/(H2
W (−m0) +µ2)] in the partition function (we

take m0 = 1.6 and µ = 0.2) that suppresses the near-zero eigen-
value of HW (−m0) and thus makes the numerical operation with
the overlap operator (4) substantially faster. Furthermore, since the
exact zero eigenvalue is forbidden, the global topological change is
preserved during the molecular dynamics evolution of the gauge
field. Our main runs are performed at Q = 0, while Q = −2 and
−4 configurations are also generated at one sea quark mass in or-
der to check the consistency as described below. Ergordicity within
a given global topological charge is satisfied if the configuration
space of that topological sector forms a connected manifold. This
is indeed the case in the continuum SU(3) gauge theory on a four-
dimensional torus, and therefore is probably also true at small
lattice spacing adopted in this work.

We use the Hybrid Monte Carlo algorithm [16] with the mass
preconditioning [17]. The fermion masses for the preconditioner
were chosen to be 0.4 for heavier sea quark masses and 0.2 for
the two lightest ones (see later). We exploit the rational approxi-
mation a la Zolotarev for the sign function in (4) after projecting
out low-lying eigenmodes of HW (−m0). With the number of poles
in the rational function to be 8–10, the accuracy of O (10−(7−8)) is
achieved for the sign function. The simulations have been done
in two phases for each sea quark mass. In the first phase the
nested conjugate gradient (CG) is used to invert the overlap oper-
ator (4) (see [18,19] for details). On the other hand, in the second
phase we use the five-dimensional implementation of the over-
lap solver without the low-mode projection. The target accuracy of
O (10−(7−8)) is maintained by adding an additional Metropolis step
calculated with the nested CG [20].

For the sea quark mass mq we take six values: 0.015, 0.025,
0.035, 0.050, 0.070, and 0.100 that cover the mass range ms/6−ms
with ms the physical strange quark mass. After discarding 500 tra-
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the chiral limit (or the physical up and down quark masses) also
makes the tunneling of topological charge a rare event, because of
the suppression of the fermion determinant for large topological
charges.

During the last decade, (i) and (ii) have been solved by the re-
alization of exact chiral symmetry on the lattice, with which the
topological charge is uniquely defined at any finite lattice spac-
ing by counting the number of fermionic zero-modes. (For recent
studies respecting the exact chiral symmetry, we refer [4,5].) How-
ever, (iii) remains insurmountable, since the correct sampling of
topology becomes increasingly more difficult towards realistic sim-
ulation with lighter quarks and finer lattices. A plausible solution
is to perform QCD simulations in a fixed topological sector and to
extract χt from local topological fluctuations. In [6] (see also [7]),
a general formula to transcribe any observable measured at a fixed
topological charge to its value in the θ vacuum is derived. As an
application, a new method to calculate χt is also proposed.

In this Letter, we use this method to precisely calculate χt
in two-flavor lattice QCD with exact chiral symmetry. The results
are compared with the prediction from chiral perturbation theory
(χPT) [8]
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for N f flavors of sea quarks with mass mq . The chiral conden-
sate Σ can be determined independently, e.g., from the low-lying
eigenvalues of the Dirac operator [9,10]. Therefore, the comparison
provides a critical test of the lattice approach to study the QCD
vacuum in the chiral regime.

A two-point function of the topological charge density ρ(x)
calculated in a finite volume Ω at a given topological charge Q
behaves as [6]
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where c4 = −(⟨Q 4⟩−3⟨Q 2⟩2)/Ω . The expectation value ⟨· · ·⟩Q de-
notes an average in a given topological sector Q . The correlation
does not vanish even for large separations, because of the violation
of the clustering property at fixed topological charge. We empha-
size that the derivation of (2) relies only on modest assumptions
such as ⟨Q 2⟩ ≫ 1 and Q ≪ ⟨Q 2⟩, which are the conditions to ap-
ply the saddle point expansion in the Fourier transform from a
fixed θ to a fixed Q . Except for these conditions, the formula is
model independent.

We consider, in particular, two spatial sub-volumes at t1 and t2,
for which the correlator is defined as

C(t1 − t2) ≡
〈
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=
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where the summations run over the spatial sites x⃗1 and x⃗2 at t1
and t2, respectively. Its plateau at large |t1 − t2| can be used to
extract χt , provided that |c4| ≪ 2χ2
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In order to preserve the exact chiral symmetry, which is es-

sential for the definition of the topological charge, we employ the
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with mass mq . The kernel operator HW (−m0) is the conventional
Wilson–Dirac operator with a large negative mass term −m0.

In place of the topological charge density ρ(x) (and ρ(0))
in (2), we use mqP0(x) (and mqP0(0)), that were shown to give
the same asymptotic constant as (2) [6] (the original suggestion
is in [11]), where P0(x) is the flavor singlet pseudo-scalar den-
sity P0(x) ≡ 1
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Fig. 1. A schematic diagram for the time-correlation function of the flavor singlet
operator P0(x). Each solid line denotes the valence quark propagator.

relator Cη′ (t) ≡ ∑
x⃗⟨P0(x)P0(0)⟩ contains a connected and a dis-

connected diagram as shown in Fig. 1. If we pick the discon-
nected piece and identify a “topological charge density”, it can be
written as ρ1(x) = mq tr[γ5(Dc + mq)

−1
x,x ], where Dc is a chirally-

symmetric (γ5Dc + Dcγ5 = 0) nonlocal operator, relating to D(0)
by Dc = [1 − aD(0)/(2m0)]−1D(0) [14]. Integrated over the en-
tire lattice volume, ρ1(x) reduces to the number of fermionic
zero-modes, and thus has the necessary property for the topolog-
ical charge density. This implies that the correlator ⟨ρ1(x)ρ1(0)⟩
has the same asymptotic constant as (2). However, the correlator
⟨mqP0(x)mqP0(0)⟩ approaches the constant with the rate governed
by the η′ mass, e−mη′ |x| , which is much faster than e−mπ |x| appear-
ing in ⟨ρ1(x)ρ1(0)⟩.

Simulations are carried out for two-flavor (N f = 2) QCD
on a 163 × 32 lattice at a lattice spacing ∼ 0.12 fm. For the
gluon part, the Iwasaki action is used at β = 2.30 together
with unphysical Wilson fermions and associated twisted-mass
ghosts [15]. The unphysical degrees of freedom generate a fac-
tor det[H2

W (−m0)/(H2
W (−m0) +µ2)] in the partition function (we

take m0 = 1.6 and µ = 0.2) that suppresses the near-zero eigen-
value of HW (−m0) and thus makes the numerical operation with
the overlap operator (4) substantially faster. Furthermore, since the
exact zero eigenvalue is forbidden, the global topological change is
preserved during the molecular dynamics evolution of the gauge
field. Our main runs are performed at Q = 0, while Q = −2 and
−4 configurations are also generated at one sea quark mass in or-
der to check the consistency as described below. Ergordicity within
a given global topological charge is satisfied if the configuration
space of that topological sector forms a connected manifold. This
is indeed the case in the continuum SU(3) gauge theory on a four-
dimensional torus, and therefore is probably also true at small
lattice spacing adopted in this work.

We use the Hybrid Monte Carlo algorithm [16] with the mass
preconditioning [17]. The fermion masses for the preconditioner
were chosen to be 0.4 for heavier sea quark masses and 0.2 for
the two lightest ones (see later). We exploit the rational approxi-
mation a la Zolotarev for the sign function in (4) after projecting
out low-lying eigenmodes of HW (−m0). With the number of poles
in the rational function to be 8–10, the accuracy of O (10−(7−8)) is
achieved for the sign function. The simulations have been done
in two phases for each sea quark mass. In the first phase the
nested conjugate gradient (CG) is used to invert the overlap oper-
ator (4) (see [18,19] for details). On the other hand, in the second
phase we use the five-dimensional implementation of the over-
lap solver without the low-mode projection. The target accuracy of
O (10−(7−8)) is maintained by adding an additional Metropolis step
calculated with the nested CG [20].

For the sea quark mass mq we take six values: 0.015, 0.025,
0.035, 0.050, 0.070, and 0.100 that cover the mass range ms/6−ms
with ms the physical strange quark mass. After discarding 500 tra-
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the chiral limit (or the physical up and down quark masses) also
makes the tunneling of topological charge a rare event, because of
the suppression of the fermion determinant for large topological
charges.

During the last decade, (i) and (ii) have been solved by the re-
alization of exact chiral symmetry on the lattice, with which the
topological charge is uniquely defined at any finite lattice spac-
ing by counting the number of fermionic zero-modes. (For recent
studies respecting the exact chiral symmetry, we refer [4,5].) How-
ever, (iii) remains insurmountable, since the correct sampling of
topology becomes increasingly more difficult towards realistic sim-
ulation with lighter quarks and finer lattices. A plausible solution
is to perform QCD simulations in a fixed topological sector and to
extract χt from local topological fluctuations. In [6] (see also [7]),
a general formula to transcribe any observable measured at a fixed
topological charge to its value in the θ vacuum is derived. As an
application, a new method to calculate χt is also proposed.

In this Letter, we use this method to precisely calculate χt
in two-flavor lattice QCD with exact chiral symmetry. The results
are compared with the prediction from chiral perturbation theory
(χPT) [8]
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, (1)

for N f flavors of sea quarks with mass mq . The chiral conden-
sate Σ can be determined independently, e.g., from the low-lying
eigenvalues of the Dirac operator [9,10]. Therefore, the comparison
provides a critical test of the lattice approach to study the QCD
vacuum in the chiral regime.

A two-point function of the topological charge density ρ(x)
calculated in a finite volume Ω at a given topological charge Q
behaves as [6]
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where c4 = −(⟨Q 4⟩−3⟨Q 2⟩2)/Ω . The expectation value ⟨· · ·⟩Q de-
notes an average in a given topological sector Q . The correlation
does not vanish even for large separations, because of the violation
of the clustering property at fixed topological charge. We empha-
size that the derivation of (2) relies only on modest assumptions
such as ⟨Q 2⟩ ≫ 1 and Q ≪ ⟨Q 2⟩, which are the conditions to ap-
ply the saddle point expansion in the Fourier transform from a
fixed θ to a fixed Q . Except for these conditions, the formula is
model independent.

We consider, in particular, two spatial sub-volumes at t1 and t2,
for which the correlator is defined as
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where the summations run over the spatial sites x⃗1 and x⃗2 at t1
and t2, respectively. Its plateau at large |t1 − t2| can be used to
extract χt , provided that |c4| ≪ 2χ2
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sential for the definition of the topological charge, we employ the
overlap-Dirac operator [12,13]
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Wilson–Dirac operator with a large negative mass term −m0.

In place of the topological charge density ρ(x) (and ρ(0))
in (2), we use mqP0(x) (and mqP0(0)), that were shown to give
the same asymptotic constant as (2) [6] (the original suggestion
is in [11]), where P0(x) is the flavor singlet pseudo-scalar den-
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operator P0(x). Each solid line denotes the valence quark propagator.

relator Cη′ (t) ≡ ∑
x⃗⟨P0(x)P0(0)⟩ contains a connected and a dis-

connected diagram as shown in Fig. 1. If we pick the discon-
nected piece and identify a “topological charge density”, it can be
written as ρ1(x) = mq tr[γ5(Dc + mq)

−1
x,x ], where Dc is a chirally-

symmetric (γ5Dc + Dcγ5 = 0) nonlocal operator, relating to D(0)
by Dc = [1 − aD(0)/(2m0)]−1D(0) [14]. Integrated over the en-
tire lattice volume, ρ1(x) reduces to the number of fermionic
zero-modes, and thus has the necessary property for the topolog-
ical charge density. This implies that the correlator ⟨ρ1(x)ρ1(0)⟩
has the same asymptotic constant as (2). However, the correlator
⟨mqP0(x)mqP0(0)⟩ approaches the constant with the rate governed
by the η′ mass, e−mη′ |x| , which is much faster than e−mπ |x| appear-
ing in ⟨ρ1(x)ρ1(0)⟩.

Simulations are carried out for two-flavor (N f = 2) QCD
on a 163 × 32 lattice at a lattice spacing ∼ 0.12 fm. For the
gluon part, the Iwasaki action is used at β = 2.30 together
with unphysical Wilson fermions and associated twisted-mass
ghosts [15]. The unphysical degrees of freedom generate a fac-
tor det[H2

W (−m0)/(H2
W (−m0) +µ2)] in the partition function (we

take m0 = 1.6 and µ = 0.2) that suppresses the near-zero eigen-
value of HW (−m0) and thus makes the numerical operation with
the overlap operator (4) substantially faster. Furthermore, since the
exact zero eigenvalue is forbidden, the global topological change is
preserved during the molecular dynamics evolution of the gauge
field. Our main runs are performed at Q = 0, while Q = −2 and
−4 configurations are also generated at one sea quark mass in or-
der to check the consistency as described below. Ergordicity within
a given global topological charge is satisfied if the configuration
space of that topological sector forms a connected manifold. This
is indeed the case in the continuum SU(3) gauge theory on a four-
dimensional torus, and therefore is probably also true at small
lattice spacing adopted in this work.

We use the Hybrid Monte Carlo algorithm [16] with the mass
preconditioning [17]. The fermion masses for the preconditioner
were chosen to be 0.4 for heavier sea quark masses and 0.2 for
the two lightest ones (see later). We exploit the rational approxi-
mation a la Zolotarev for the sign function in (4) after projecting
out low-lying eigenmodes of HW (−m0). With the number of poles
in the rational function to be 8–10, the accuracy of O (10−(7−8)) is
achieved for the sign function. The simulations have been done
in two phases for each sea quark mass. In the first phase the
nested conjugate gradient (CG) is used to invert the overlap oper-
ator (4) (see [18,19] for details). On the other hand, in the second
phase we use the five-dimensional implementation of the over-
lap solver without the low-mode projection. The target accuracy of
O (10−(7−8)) is maintained by adding an additional Metropolis step
calculated with the nested CG [20].

For the sea quark mass mq we take six values: 0.015, 0.025,
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with ms the physical strange quark mass. After discarding 500 tra-
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   udd neutral dark matter candidate

• dark matter candidate  sextet Nf=2 
   electroweak active in the application 

• 1/2 unit of electric charge (anomalies) 

• rather subtle sextet baryon                           
  construction (symmetric in color) 

• charged relics not expected?

Baryon in the
sextet gauge

model

Zoltan Fodor,
Kieran
Holland,

Julius Kuti,
Santanu
Mondal,
Daniel

Nogradi, Chik
Him Wong

Constructing nucleon operator in continuum

Three SU(3) sextet fermions can give rise to a color singlet.
The tensor product 6⌦6⌦6 can be decomposed into
irreducible representations of SU(3) as,

6⌦6⌦6 = 1�2⇥8�10�10�3⇥27�28�2⇥35

where irreps are denoted by their dimensions and 10 is the
complex conjugate of 10.

Fermions in the 6-representation carry 2 indices, y
ab

, and
transform as

y
aa

0 �! U
ab

U
a

0
b

0 y
bb

0

and the singlet can be constructed explicitly as

e
abc

e
a

0
b

0
c

0 y
aa

0 y
bb

0 y
cc

0 .

topic: challenges of baryon spectroscopy 
and dark matter implications?



light scalar separated from resonance spectrum  developing 

multiple scalars in  models close to CW  we do not know 

Resonance spectrum  building up 

what is the eta’?     very heavy 

entangled scalar-goldstone dynamics  sigma model or dilaton ? 
how to decouple and isolate the light scalar ? 

bridge between UV and IR scale       in the works 
scale-dependent gauge coupling - high precision 

predictions without attempted UV completions  ? 
related phenomenology 

consistent EW embedding  ➞  dark matter 

BSM needs new lattice tools  ➞ RMT, ππ-scattering, … 
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Masses in physical unit
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 F
π

β=3.20

Fπ = F + pF⋅ m    linear chiral fit

F =  0.0253 ± 0.0004
pF =  3.9 ± 0.1

χ2/dof = 1.96

input from 323× 64, 403× 80, 483× 96 volumes

m fit range:  0.003 − 0.006

  F
π
 decay constant     (Rwall pion channel)
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Figure: Preliminary chiral extrapolation of Fp . The calculation is

performed on lattices with b = 3.20, V = 483⇥96 for m = 0.003 and

V= 323⇥64 for the rest, using 200�300 configurations. Hadron

spectroscopy at b = 3.20 in physical units (right).

0++ scalar Higgs?

a0 scalar isovector?

diphoton res?

unlike QCD           BSM lattice challenges     


