Angular and chiral content of the ρ and ρ' mesons

Christian Rohrhofer, Markus Pak, Leonid Y. Glozman

based on 1603.04665 [hep-lat]

26 July 2016, Lattice 2016

Physical mesons

 ρ'

Physical mesons

Chiral representations

Physical mesons

Chiral representations

Angular momentum

The quark model K.A. Olive et al. (PDG), Chin. Phys. C, 38, 090001 (2014)

$n^{2s+1}\ell_J$	J ^{PC}	type	I=1	$I=\frac{1}{2}$	I=0
$1 {}^{1}S_{0}$	0-+	pseudoscalar	π	K	η, η'
$1 {}^{3}S_{1}$	$1^{}$	vector	ho(770)	K^*	ω , ϕ
$1 \ ^{1}P_{1}$	1^{+-}	pseudovector	$b_1(1235)$	K_{1B}	h_1
$1 {}^{3}P_{0}$	0++	scalar	$a_0(1450)$	K_0^*	f_0
$1 {}^{3}P_{1}$	1^{++}	axial vector	$a_1(1260)$	K_{1A}	f_1
$1 {}^{3}P_{2}$	2^{++}	tensor	a ₂ (1320)	K_2^*	f_2
		:	1		
$2^{3}S_{1}$	$1^{}$	vector	ho(1450)		
1 ³ D ₁	1	vector	ho(1700)		

The quark model K.A. Olive et al. (PDG), Chin. Phys. C, 38, 090001 (2014)

$n^{2s+1}\ell_J$	J^{PC}	type	I=1	$I=\frac{1}{2}$	I=0
$1 {}^{1}S_{0}$	0-+	pseudoscalar	π	K	η, η'
$1 {}^{3}S_{1}$	1	vector	$\rho(770)$	K^*	ω , ϕ
$1 \ ^{1}P_{1}$	1^{+-}	pseudovector	$b_1(1235)$	K_{1B}	h_1
$1 {}^{3}P_{0}$	0++	scalar	$a_0(1450)$	K_0^*	f_0
$1 {}^{3}P_{1}$	1^{++}	axial vector	$a_1(1260)$	K_{1A}	f_1
$1 {}^{3}P_{2}$	2++	tensor	a ₂ (1320)	K_2^*	f_2
$2 {}^{3}S_{1}$	1	vector	ρ (1450)		
$1 {}^{3}D_{1}$	1	vector	ho(1700)		

The quark model K.A. Olive et al. (PDG), Chin. Phys. C, 38, 090001 (2014)

$n^{2s+1}\ell_J$	J ^{PC}	type	I=1	$I=\frac{1}{2}$	I=0
$1 {}^{1}S_{0}$	0^+	pseudoscalar	π	K	η, η'
$1 {}^{3}S_{1}$	1	vector	$\rho(770)$	K^*	ω , ϕ
$1 \ ^{1}P_{1}$	1^{+-}	pseudovector	$b_1(1235)$	K_{1B}	h_1
$1 {}^{3}P_{0}$	0++	scalar	<i>a</i> 0(1450)	K_0^*	f_0
$1 {}^{3}P_{1}$	1^{++}	axial vector	<i>a</i> 1(1260)	K_{1A}	f_1
$1 {}^{3}P_{2}$	2^{++}	tensor	a ₂ (1320)	K_2^*	f_2
$2^{3}S_{1}$	1	vector	ρ (1450)		
$1 {}^{3}D_{1}$	1	vector	$\rho(1700)$		

"The physical vector mesons listed under $1 {}^{3}D_{1}$ and $2 {}^{3}S_{1}$ may be mixtures of $1 {}^{3}D_{1}$ and $2 {}^{3}S_{1}$, or even have hybrid components."

Angular momentum content of the ρ meson

$$|11^{--}\rangle = \mathbf{x} |(0,1) + (1,0)\rangle + \mathbf{y} |(\frac{1}{2},\frac{1}{2})_b\rangle$$

Glozman and Nefediev, 0704.2673 [hep-ph], PhysRevD76,096004

Angular momentum content of the ρ meson

$$|11^{--}\rangle = \mathbf{x} |(0,1) + (1,0)\rangle + \mathbf{y} |(\frac{1}{2},\frac{1}{2})_b\rangle$$

$$\downarrow$$

$$|11^{--}\rangle = \left(\sqrt{\frac{2}{3}}\mathbf{x} + \sqrt{\frac{1}{3}}\mathbf{y}\right) |\mathbf{1},^3 S_1\rangle + \left(\sqrt{\frac{1}{3}}\mathbf{x} - \sqrt{\frac{2}{3}}\mathbf{y}\right) |\mathbf{1},^3 D_1\rangle$$

Glozman and Nefediev, 0704.2673 [hep-ph], PhysRevD76,096004

Angular momentum content of the ρ meson

$$|11^{--}\rangle = \mathbf{x} |(0,1) + (1,0)\rangle + \mathbf{y} |(\frac{1}{2},\frac{1}{2})_b\rangle$$

$$\downarrow$$

$$|11^{--}\rangle = \left(\sqrt{\frac{2}{3}}\mathbf{x} + \sqrt{\frac{1}{3}}\mathbf{y}\right) |\mathbf{1},^3 S_1\rangle + \left(\sqrt{\frac{1}{3}}\mathbf{x} - \sqrt{\frac{2}{3}}\mathbf{y}\right) |\mathbf{1},^3 D_1\rangle$$

Glozman and Nefediev, 0704.2673 [hep-ph], PhysRevD76,096004

Gauge configurations and lattice details

JLQCD $n_f = 2$ configurations

- Ensemble: 100 configurations
- Lattice size $16^3 \times 32$
- Spacing *a* = 0.1184(3)*fm*
- Topological charge Q = 0
- Dynamical overlap fermions
- Pion mass $m_{\pi}=(289\pm1.8)MeV$
- Lowest Energy for zero-momentum $\pi\pi$ -state:

 $\approx 1400 \textit{MeV} \longrightarrow \rho$ is stable particle

Interpolators for a 8x8 correlation matrix

 chiral representation		
$(0,1)\oplus(1,0)$ "vector"	$(\frac{1}{2},\frac{1}{2})_b$ "tensor"	
 $ar{q}(ec{ au}\otimes\gamma^k)q$	$ar{q}(ec{ au}\otimes\gamma^{0}\gamma^{k})q$	

Interpolators for a 8x8 correlation matrix

Smearing level	chiral representation		
	$egin{aligned} (0,1)\oplus(1,0)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$(rac{1}{2},rac{1}{2})_b$ "tensor" $ar{q}(ec{ au}\otimes\gamma^0\gamma^k)q$	
super narrow narrow wide ultra wide			

Interpolators for a 8x8 correlation matrix

Smearing level	chiral representation		
	$egin{aligned} (0,1)\oplus(1,0)\ & extsf{``vector''}\ &ar{q}(ec{ au}\otimes\gamma^k)q \end{aligned}$	$(rac{1}{2},rac{1}{2})_b$ "tensor" $ar{q}(ec{ au}\otimes\gamma^0\gamma^k)q$	
super narrow	O_{sn}^V	O_{sn}^T	
narrow	O_n^V	O_n^T	
wide	O_w^V	O_w^T	
ultra wide	$O_{\mu w}^V$	O_{uw}^T	
	<		

probes chiral contribution

probes different resolutions

Variational analysis & interpolator contribution

Construct a cross correlation matrix

$$C_{ij}(t) = \langle O_i(t)O_j^{\dagger}(0)
angle = \sum_n \langle 0 | O_i | n
angle \langle n | O_j^{\dagger} | 0
angle e^{-E_n t}$$

where the overlap of interpolator O_i with physical state $|n\rangle$ is given by

 $a_i^{(n)} = \langle 0 | O_i | n \rangle$

Variational analysis & interpolator contribution

Construct a cross correlation matrix

$$\mathcal{C}_{ij}(t) = \langle O_i(t) O_j^{\dagger}(0)
angle = \sum_n \langle 0 | O_i | n
angle \langle n | O_j^{\dagger} | 0
angle e^{-E_n t}$$

where the overlap of interpolator O_i with physical state $|n\rangle$ is given by

$$a_i^{(n)} = ra{0} O_i \ket{n}$$

$$\frac{\sum_{j} C_{Vj} u_{j}^{(1)}}{\sum_{j} C_{Tj} u_{j}^{(1)}} = \frac{a_{V}^{(1)} c^{(1)} e^{-E_{1}t}}{a_{T}^{(1)} c^{(1)} e^{-E_{1}t}} = \frac{a_{V}^{(1)}}{a_{T}^{(1)}}$$

Variational analysis & interpolator contribution

Construct a cross correlation matrix

$$\mathcal{C}_{ij}(t) = \langle O_i(t) O_j^{\dagger}(0)
angle = \sum_n ra{0} O_i \ket{n} ra{n} O_j^{\dagger} \ket{0} e^{-\mathcal{E}_n t}$$

where the overlap of interpolator O_i with physical state $|n\rangle$ is given by

$$a_i^{(n)} = ra{0} O_i \ket{n}$$

$$\frac{\sum_{j} C_{Vj} u_{j}^{(1)}}{\sum_{j} C_{Tj} u_{j}^{(1)}} = \frac{a_{V}^{(1)} c^{(1)} e^{-E_{1}t}}{a_{T}^{(1)} c^{(1)} e^{-E_{1}t}} = \frac{a_{V}^{(1)}}{a_{T}^{(1)}}$$

 \rightarrow use ratio of overlaps as relative chiral contribution!

Source smearing and resolution scale

Source smearing and resolution scale

Source smearing and resolution scale

Correlators and Eigenvalues

Correlators and Eigenvalues

Angular and chiral content

Angular and chiral content

$$\begin{aligned} |\rho\rangle &= (0.998 \pm 0.002) |^{3}S_{1}\rangle - (0.05 \pm 0.025) |^{3}D_{1}\rangle \\ |\rho'\rangle &= -(0.106 \pm 0.09) |^{3}S_{1}\rangle - (0.994 \pm 0.005) |^{3}D_{1}\rangle \\ |\rho''\rangle &= (0.99 \pm 0.1) |^{3}S_{1}\rangle - (0.01 \pm 0.12) |^{3}D_{1}\rangle \end{aligned}$$

- In nature chiral symmetry is *spontaneously* broken
- Chiral condensate $\langle ar{q}q
 angle$ transforms like a mass term and breaks CS
- Banks-Casher relation connects $\langle \bar{q}q
 angle$ with low modes of the Dirac operator

- In nature chiral symmetry is *spontaneously* broken
- Chiral condensate $\langle ar{q}q
 angle$ transforms like a mass term and breaks CS
- Banks-Casher relation connects $\langle ar{q}q
 angle$ with low modes of the Dirac operator
- Remove lowest modes to *unbreak* chiral symmetry:

$$D_{\textit{restored}}^{-1} = D_{\textit{full}}^{-1} - \sum_{i=1}^{k} rac{1}{\lambda_i} \ket{v_i}ig\langle v_i |$$

- k denotes the number of removed eigenmodes
- previous work e.g. (*PhysRevD*)
 - arXiv:1107.5195
 - arXiv:1205.4887
 - arXiv:1410.8751 (isoscalar mesons)
 - arXiv:1505.03285 (J=2 mesons)
 - arXiv:1508.01413 (baryons)

- In nature chiral symmetry is spontaneously broken
- Chiral condensate $\langle ar{q}q
 angle$ transforms like a mass term and breaks CS
- Banks-Casher relation connects $\langle ar{q}q
 angle$ with low modes of the Dirac operator
- Remove lowest modes to *unbreak* chiral symmetry:

$$D_{\textit{restored}}^{-1} = D_{\textit{full}}^{-1} - \sum_{i=1}^{k} rac{1}{\lambda_i} \ket{v_i}ig\langle v_i |$$

- k denotes the number of removed eigenmodes
- previous work e.g. (*PhysRevD*)
 - arXiv:1107.5195
 - arXiv:1205.4887
 - arXiv:1410.8751 (isoscalar mesons)
 - arXiv:1505.03285 (J=2 mesons)
 - arXiv:1508.01413 (baryons)

 \rightarrow chiral symmetry indeed gets restored in the hadron spectrum

Effective masses after unbreaking X symmetry

Use ratio of overlaps

$$\frac{\langle 0 \mid O_V \mid n \rangle}{\langle 0 \mid O_T \mid n \rangle} = \frac{a_V}{a_T}$$

as measure for chiral content

Use ratio of overlaps

$$\frac{\langle 0 \mid O_V \mid n \rangle}{\langle 0 \mid O_T \mid n \rangle} = \frac{a_V}{a_T}$$

as measure for chiral content

CR et al, 1603.04665 [hep-lat]

- ρ groundstate is a 3S_1 wave
- ρ' is a ${}^{3}D_{1}$ wave (contrast to QM!)
- ρ'' is a 3S_1 wave (contrast to QM!)

- ρ groundstate is a 3S_1 wave
- ρ' is a ${}^{3}D_{1}$ wave (contrast to QM!)
- ρ'' is a 3S_1 wave (contrast to QM!)

In a scenario, where chiral symmetry is restored in the hadron spectrum:

- ho, ho'' live in $(0,1)\oplus(1,0)$ representation
- ρ' lives in $(\frac{1}{2}, \frac{1}{2})_b$ representation
- The effective masses for ρ and ρ' get degenerate

- ρ groundstate is a 3S_1 wave
- ρ' is a ${}^{3}D_{1}$ wave (contrast to QM!)
- ρ'' is a 3S_1 wave (contrast to QM!)

In a scenario, where chiral symmetry is restored in the hadron spectrum:

- ho, ho'' live in $(0,1)\oplus(1,0)$ representation
- ρ' lives in $(\frac{1}{2}, \frac{1}{2})_b$ representation
- The effective masses for ρ and ρ' get degenerate

thank you!