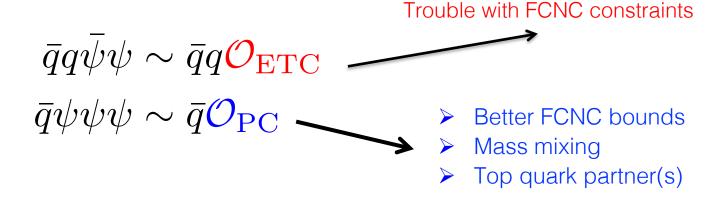
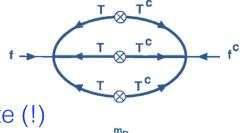
Towards Partial Compositeness on the Lattice: Baryons with Fermions in Multiple Representations

William I. Jay, University of Colorado Boulder

With Tom DeGrand, Ethan Neil, Daniel Hackett (Boulder); Yigal Shamir, Ben Svetitsky (Tel Aviv); and Maarten Golterman (San Francisco)




1. Introduction

- Lightning review of partial compositeness
- o Our lattice model
- o Technical specifications
- 2. Lattice research program
 - Baryons in SU(3) and SU(4)
 - o Non-relativistic quark models
 - o Lattice results
- 3. Summary and Outlook

How does mass generation occur in strongly coupled BSM models?

- Classic "extended technicolor"
 - Chiral condensate breaks SU(2)_L
 - Higgs emerges from dynamics: dilaton (?)
- Composite Higgs -- Limited lattice investigation to date (!)
 - Chiral condensate preserves SU(2)_L
 - Higgs from SSB: exact Goldstone boson
 - SM loops generate potential for Higgs
- Fermion masses from 4-fermion interactions in both cases:
 - Partial compositeness means linear couplings to baryon operators

Ferretti's Model (1404.7137)

A specific continuum UV theory for partial compositeness

- ♦ SU(4) gauge theory
- \diamond Fermions:
 - **5 sextet** Majorana fermions
 - 6 fundamental Majorana fermions
 - Equivalent Dirac DOF: 2.5 sextet, 3 fundamental
- ♦ Symmetry breaking: SU(5)/SO(5) in the IR
 - Sextet SU(4) is a real representation
 - Symmetry breaking pattern is different from QCD

Tough theory for lattice simulation

 $6\times$

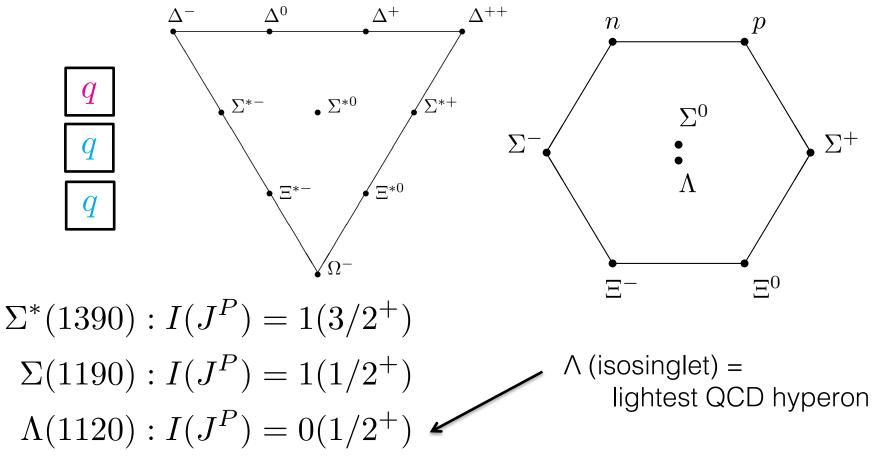
Our Lattice Deformation

(The model we actually simulate)

- Still SU(4) Gauge theory
- Modified matter content
 - $-2.5\mapsto 2$ sextet Dirac SU(4) fermions
 - $3 \mapsto 2$ fundamental Dirac SU(4) fermions
- Symmetry breaking: SU(4)/SO(4) in the IR
- Disclaimer 1: The deformation to SU(4)/SO(4) is not directly relevant for phenomenology.
- Disclaimer 2: Results today come from exploratory runs with partial quenching. Fully dynamical simulations are underway.

Technical Specifications

- "Multirep Milc" with "NDS action"
 - (DeGrand, Shamir, Svetitsky: 1407.4201)
- Wilson-Clover fermions
- SU(4) theory space parameterized by (β, κ₄, κ₆)
- Today
 - Exploratory study: partially quenched
 - o Ensemble from DeGrand, Liu: 1606.01277
 - \circ V=16³ x 32
 - o 2 x dynamical fundamental fermions


 $(\beta = 10.2, \kappa_4 = 0.1265, \kappa_{4;critical} = 0.1284)$

 $m_{PS}/m_V = 0.385(1)/0.560(3) = 0.688$

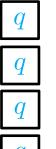
Quenched sextet propagators

Warm-up for baryons in SU(4): Hyperons in SU(3)

Baryons with (S=-1): uus, uds, dds

Baryons in SU(4)

Building blocks


- Fundamental SU(4) fermion: q_a
- Sextet SU(4) fermion: Q_{ab} with two indices

Quarks in a single representation

- \clubsuit Cousins of QCD nucleons
- * Typical baryons: $(qqqq)_{SU(4)}$
- \clubsuit 4 fermions: bosons
- ♦ Also appearing: $(QQQQQQ)_{SO(6)}$

Quarks in both representations

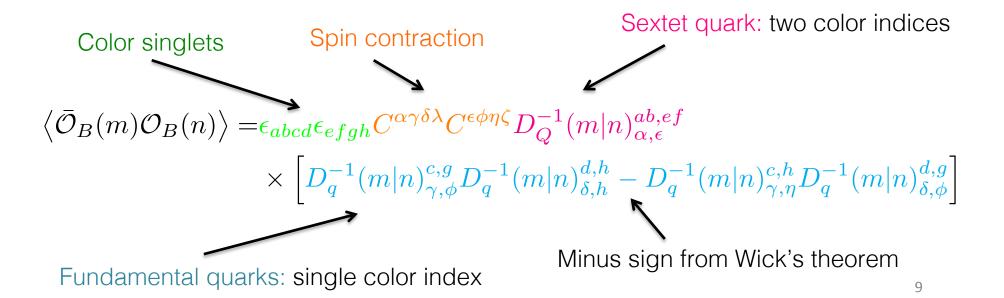
- ✤ Cousins of QCD hyperons
- ✤ 3 fermions: fermions
- \clubsuit My code constructs these states (!)

Baryon Masses in SU(4)

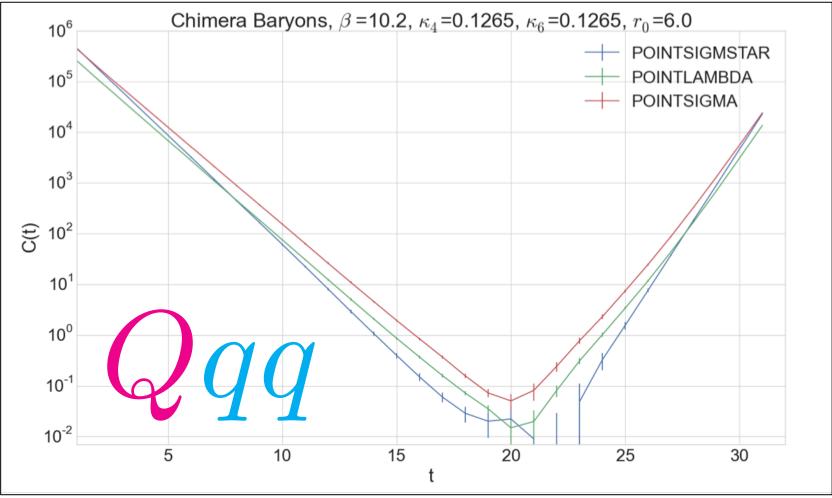
Goal: qualitative understanding of baryon spectrum

The tool: A non-relativistic quark model

- "Constituent" quark masses with "color hyperfine" interactions
- A NR quark model also makes quantitative predictions for the entire spectrum of SU(4) baryons

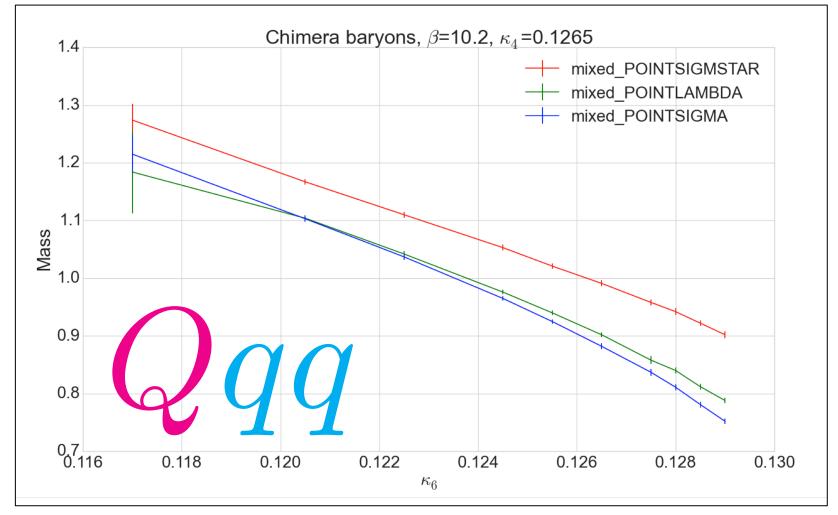

Gell-Mann 1969

$$m_{qqqq} = 4m_q + \frac{C}{m_q^2} \sum_{i < j} \vec{S}_i \cdot \vec{S}_j = 4m_q + \frac{C}{2m_q^2} \left(\vec{S}_{tot}^2 - 3 \right)$$

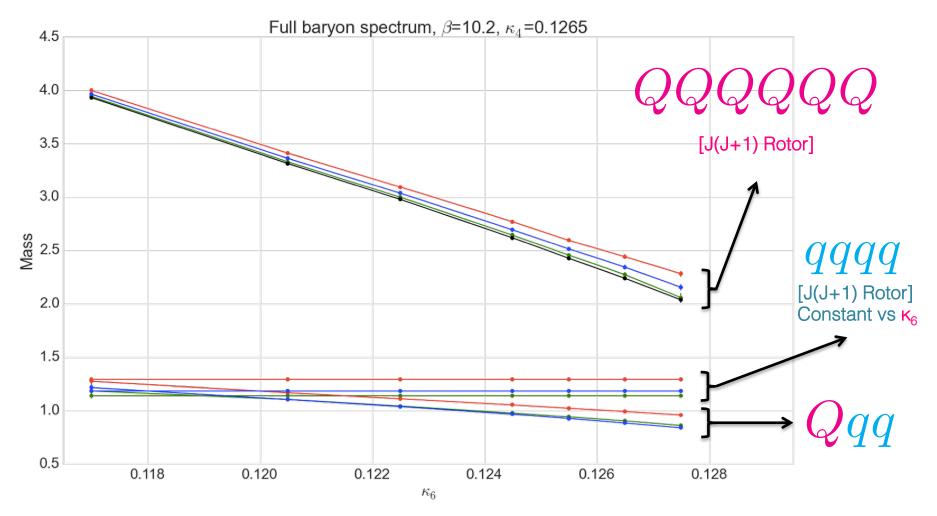

$$m_{Qqq} = m_Q + 2m_q + \frac{C}{m_q^2} \left(\vec{S}_1 \cdot \vec{S}_2 + 2\frac{m_q}{m_Q} \vec{S}_Q \cdot (\vec{S}_1 + \vec{S}_2) \right)$$

Qqq Lattice Interpolating Fields

- Color Structure
 - Baryons are SU(4) color singlets
 - Code simulates six degrees of freedom for sextets
 - Must map indices SO(6) \rightarrow SU(4) for correlation functions
- Spin Structure
 - Intuition from quark model as guide
 - Projection with $P_{\pm} = \frac{1}{2}(1 \pm \gamma_4)$ onto two-component NR basis
 - Clebsches C^{αβγδ} enact spin contraction



"Chimera" 2-point correlators


- Strong signals with 50 60 configurations
- Asymmetric correlators, as in QCD (cf. Leinweber 2005, nucl-th/0406032)

Chimera Spectrum vs κ_6 (fixed κ_4)

Isotriplet "Σ-like" state lighter than isosinglet "Λ-like" state at small sextet quark mass

SU(4) baryon spectrum vs K₆

Chimera Qqq baryons can be light particles in the heavy spectrum
 Will these features persist with both representations in the sea? 12

Success with the Quark Model

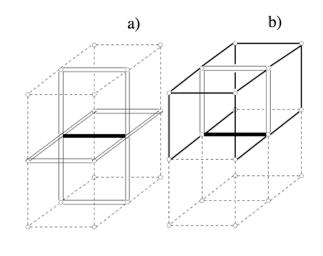
(pending confirmation with both representations in the sea)

- This SU(4) system is not QCD
- But the quark model successfully <u>predicts</u> all the qualitative features of the low-lying hadron spectrum
 - Rotor splittings: $\delta m \sim J(J+1)$
 - Relative sizes of QQQQQ, qqqq, Qqq
 - Presence of Σ - Λ inversion
- The chimera baryons are comparatively light -> good for phenomenology

Summary and Outlook

- We saw preliminary results for SU(4) gauge theory with fermions in mixed representations
 - A quark model plays a key role in our understanding the spectrum of this theory.
- Interesting related questions remain (in progress)
 - Pheno implications for the Σ - Λ inversion?
 - Calculation of the non-perturbative mixing of elementary fermions with composite operators
 - Calculation of anomalous dimensions for the four-fermion interactions
 - Extending Large-N results to mixed representations
 - ...
- Other interesting questions we're actively pursuing
 - What does the thermodynamic phase diagram look like?
 - Do dynamically separated phases exist?
 - Do hierarchies of scales exist?

Thank you for your attention.


Back-up slides

The NDS Action

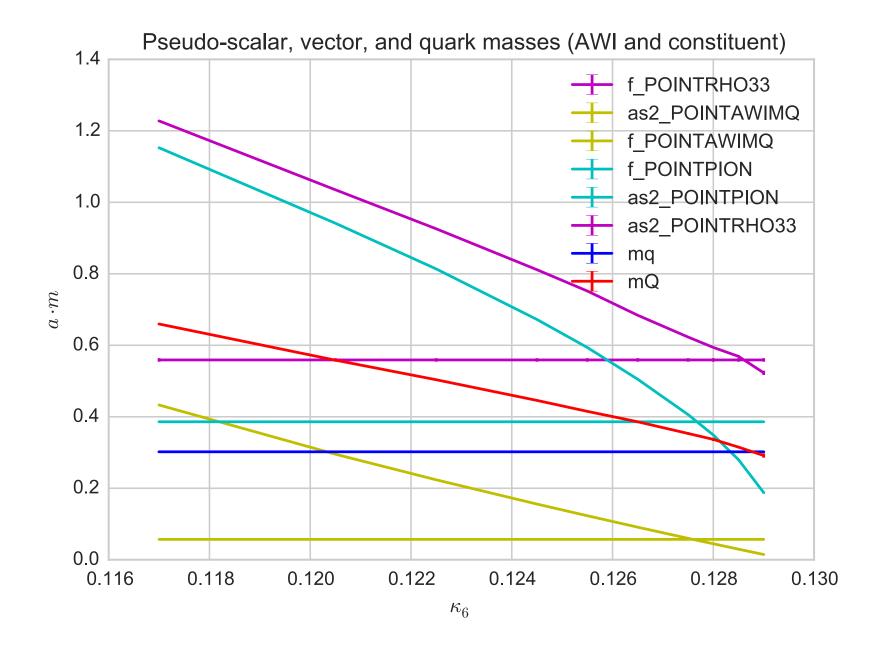
(Slide credit: E. Neil)

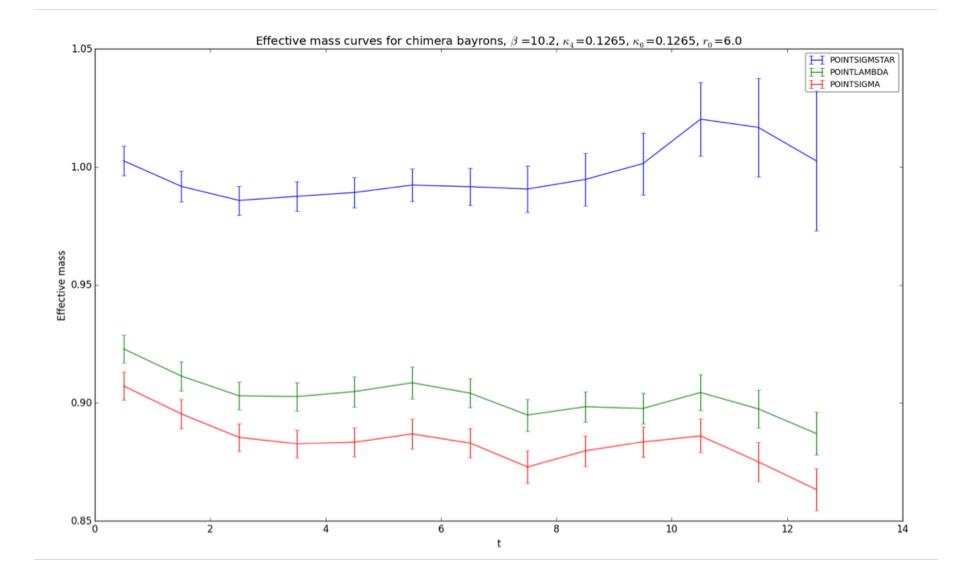
- HYP smearing: staple sum over "fat links" added to original. nHYP normalizes the smeared link W. $V = \Omega(\Omega^{\dagger}\Omega)^{-1/2}$
- Q^{-1/2} appears in the fermion force, and small eigenvalues can cause spikes.
 "nHYP dislocation suppressing" action cancels these with additional marginal gauge terms S_{NDS}:

$$S_{\text{NDS}} = \frac{1}{2N_c} \sum_{x} \operatorname{Tr} \left(\gamma_1 \sum_{\mu} \tilde{Q}_{x,\mu}^{-1} + \gamma_2 \sum_{\mu \neq \nu} \tilde{Q}_{x,\mu;\nu}^{-1} + \gamma_3 \sum_{\rho \neq \xi} Q_{x,\rho;\xi}^{-1} \right)$$

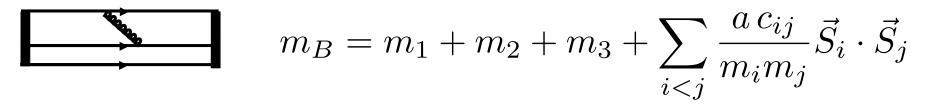
$$Q^{-1/2} = (\Omega^{\dagger} \Omega)^{-1/2}$$

 Bare gauge coupling depends on β and γ.
 We fix the ratio and adjust β to move lattice spacing


More technical details 1/2


The "Multirep MILC" code...

- Runs SU(N_c) gauge theory with simultaneous dynamical fermions in multiple representations
- Is branched from the MILCv7 code, focusing on Wilson fermions
- Builds with dynamical code generation using Perl so that N_c and representation(s) are fixed during code generation, allowing the C compiler to produce optimized matrix operations
- Includes all the modern bells and whistles: Clover term, nHYP smearing, Hasenbusch preconditioning, multi-level integrators, dislocation-suppressing NDS action (DeGrand, Shamir, Svetitsky: 1407.4201)


More technical details 2/2

Running parameters and results: 2 x Dynamical fundamental fermions \circ (β = 10.2, κ_4 = 0.1265, $\kappa_{4:critical}$ = 0.1284) $o m_{PS}/m_V = 0.385(1) / 0.560(3) = 0.688$ Quenched sextet propagators \circ Range of kappa values: $K_6 = 0.1170$ up to $0.1290, K_{6:critical} = 0.1295$ $o m_{PS}/m_{V}$ ranging from 1.15 / 1.23 = 0.93 down to 0.19/0.52 = 0.36

Baryons and the quark model

 $m_B = 3m + a_0 + a_1 J(J+1)$

$$m_{\text{QCD hyperon}} = m_s + 2m_u + \frac{a}{m_u^2} \left(\vec{S}_1 \cdot \vec{S}_2 + \frac{m_u}{m_s} \vec{S}_Q \cdot (\vec{S}_1 + \vec{S}_2) \right)$$
$$m_{Qqq} = m_Q + 2m_q + \frac{a}{m_q^2} \left(\vec{S}_1 \cdot \vec{S}_2 + 2\frac{m_q}{m_Q} \vec{S}_Q \cdot (\vec{S}_1 + \vec{S}_2) \right)$$

Two distinct gluon exchanges: sextet quark feels twice as much color force. Formally, this difference is a statement about relative sizes of Casimirs.

References

(A short and scandalously incomplete list)

- Composite Higgs
 - Contino, The Higgs as a Composite Nambu-Goldstone Boson, arXiv:1005.4269
 - Contino et al., On the effect of resonances in composite Higgs phenomenology, arXiv: 1109.1570
 - Contino and Salvarezza, One-loop effects from spin-1 resonances in Composite Higgs models, arXiv:1504.02750
- SU(4) models
 - Ferretti and Karateev, Fermionic UV completions of Composite Higgs Models, arXiv: 1312.5330
 - Ferretti, UV Completions of Partial Compositeness: The Case for a SU(4) Gauge Group, arXiv:1404.7137
 - Ferretti, Gauge theories of Partial Compositeness: Scenarios for Run-II of the LHChttp, arXiv:1604.06467
- Alternative perspectives
 - Luty and Okui, Confromal Technicolor, arXiv: hep-ph/0409274
 - Vecchi, A dangerous irrelevant UV-completion of the composite Higgs, arXiv: 1506.00623
 - Ma and Cacciapaglia, Fundamental Composite 2HDM: SU(N) with 4 flavours, arXiv: 1508.07014

Baryons and Large-N

- Dashen, Jenkins, and Manohar derived formulae for strange baryons in the large-N limit
 - Depends only on the spin-flavor structure of the baryons, in the QCD case of SU(2) x U(1)
- Gives a more general / less restrictive prediction for the spectrum than the quark model.

$$M = a_0 N_c + a_1 N_s + a_{21} \frac{J^2}{N_c} + a_{22} \frac{I^2}{N_c} + a_{23} \frac{N_s^2}{N_c} + \mathcal{O}\left(\frac{1}{N_c^3}\right)$$

• Do these results remain valid with fermions in mixed representations?