Effects of magnetic fields on $q\bar{q}$ interactions

C.Bonati1, M.D’Elia1, M.Mariti1, M.Mesiti1, F.Negro1, A.Rucci1, F.Sanfilippo2

1Department of Physics of University of Pisa and INFN Pisa, Italy
2School of Physics and Astronomy, University of Southampton, UK

Lattice 2016, 34th International Symposium on Lattice Field Theory
28 July 2016
table of contents

- Introduction
- Effects of the magnetic field on the static potential at $T=0$
- What happens at finite temperatures? ($T < T_c$)
- Conclusions
intro physical conditions

QCD with strong magnetic fields $eB \sim m^2_\pi \sim 10^{15-16}$ T

- Non-central heavy ion collisions with $eB \sim 10^{15}$T [Skokov et al. ’09]
- Possible production in early universe $eB \sim 10^{16}$T [Vachaspati ’91]

In heavy ion collisions

- Expected $eB \sim 0.3$ GeV2 at LHC in Pb+Pb at $\sqrt{s_{NN}}=4.5$TeV and $b=4$fm
- Timescales depend on thermal medium properties (most pessimistic case: 0.1-0.5 fm/c)
- Spatial distribution of the field and lifetime are still debated
An external magnetic field B on the lattice is introduced through abelian parallel transports $u_\mu(n)$.

- Abelian phases enter the Lagrangian by modifying the covariant derivative

$$U_\mu(n) \rightarrow U_\mu(n)u_\mu(n)$$

- External field is fixed: non-propagating fields, no kinetic term

- Periodic boundary conditions lead to the quantization condition

$$|q_{\text{min}}|B = \frac{2\pi b}{a^2N_xN_y} \quad b \in \mathbb{Z}$$
intro static potential

In the confining phase at low temperatures, the $Q\bar{Q}$ interaction is well described by the Cornell potential

$$V_C(r) = -\frac{\alpha}{r} + \sigma r + V_0 \quad \sigma \simeq (440\text{MeV})^2 \quad \alpha \sim 0.4$$

On the lattice:

- At $T=0$ it can be extracted from the Wilson loop

$$aV(a\vec{n}) = -\lim_{n_t \to \infty} \log \left(\frac{\langle W(a\vec{n}, n_t + 1) \rangle}{\langle W(a\vec{n}, n_t) \rangle} \right)$$

- For $T>0$ from Polyakov loop correlators

$$F(a\vec{n}, T) \simeq -aN_t \log \langle \text{Tr} L^\dagger (\vec{r} + \vec{n}) \text{Tr} L(\vec{n}) \rangle$$

what about the effects of \vec{B} on the potential? (a first study: [Bonati et al. ’14])
T=0 setup and continuum results at B=0

Numerical setup
- tree-level improved gauge action
- $N_f=2+1$ rooted staggered fermions + stout improvement
- four lattices $48^3 \times 96$, 40^4, 32^4 and 24^4
- spacing $a \simeq 0.1$ fm to $a \simeq 0.24$ fm
- simulations at physical quark masses

Parameters extracted from the continuum limit at $B = 0$

\[\alpha = 0.395(22) \]
\[\sqrt{\sigma} = 448(20) \text{ MeV} \]
\[r_0 = 0.489(20) \text{ fm} \]
$T=0$ angular dependence

Turning on a constant uniform external field: residual rotation symmetry around \vec{B} survives. Our ansatz:

$$V(r, \theta) = -\frac{\alpha(\theta, B)}{r} + \sigma(\theta, B)r + V_0(\theta, B)$$

with θ angle between quarks direction and \vec{B}.

Angular dependence in Fourier expansion:

$$O(\theta, B) = \bar{O}(B) \left(1 - \sum_{n=1}^{\infty} c_{2n}(B) \cos(2n\theta) \right)$$

$O = \alpha, \sigma, V_0$

General features:

- Assumption: $V(r, \theta)$ is in the Cornell form $\forall \theta$
- c_{2n+1} terms vanish (\vec{B} inversion $\theta \rightarrow \pi - \theta$)
$T=0$ angular dependence

Some details:
- fixed $|e|B \sim 1.0 \text{ GeV}^2$ on two lattices $aL \sim 5 \text{ fm}$ ($|\vec{b}| = 32$)
- Wilson loop averaged separately on orthogonal axes
- Access to 8 angles using three \vec{B} orientations

Results:
- potential is anisotropic and $V(r, \theta)$ increases with θ
- good description in terms of c_2's only ($\sim 0.2 - 0.3$)
- $\bar{O}(B)$ compatible with values at $B = 0$
T=0 anisotropy in the continuum

Questions:
- Does the anisotropy survive when \(a \to 0 \)?
- Dependence to \(B \)?

Simplify the task:

Angular dependence is fully described by the lowest coefficients \(c_2 \s

\[\delta \mathcal{O}(B) = \frac{\mathcal{O}_{XY}(B) - \mathcal{O}_Z(B)}{\mathcal{O}_{XY}(B) + \mathcal{O}_Z(B)} \]

For each \(\mathcal{O} = \sigma, \alpha, V_0 \) we can study its anisotropy (with \(\vec{B} \parallel \hat{z} \))

then

\[\delta \mathcal{O} \simeq c_2^\mathcal{O} \]
$T=0$ anisotropy in the continuum

Continuum extrapolation using

\[c_2^O = A^O \left(1 + C^O a^2 \right) |e|B^D \left(1 + E^O a^2 \right) \quad O = \sigma, \alpha, V_0 \]

Results:

- anisotropy c_2^σ of the string tension survives $a \to 0$
- c_2^α and $c_2^V_0$ compatible with zero
- $\tilde{O}(B)$ all compatible with values at $B = 0$
T > 0 effects on the free energy

what about (not so) high temperatures?

Setup:
- Fixed $a=0.0989$ fm on lattices $48^3 \times N_t$ with $N_t=14,16,20$ ($T \lesssim T_c$)
- Several magnetic quanta $b=0$ to $b=64$ with $B//z$

Results:
- Anisotropy still visible but disappears at large r
- String tension σ decreases
- Cornell form fits only at small B

Lattice 2016 A.Rucci
$T>0$ effects on the free energy

From our results:
- Decrease of the free energy as B grows
- The effect is enhanced as T reaches T_c

This is compatible with a decrease of T_c due to B [Bali et al.’12]
- Suppression of confining properties is evident before the appearance of inverse chiral magnetic catalysis
- Hence it seems to be the dominant phenomenon

Lattice 2016 A.Rucci
conclusions and summary

Investigation of the effect of B on the $Q\bar{Q}$ interaction [arXiv:1607.08160]

- The static potential becomes anisotropic $V(r) \rightarrow V(r, \theta, B)$
- Genuine effects in the continuum limit
- Modifications mostly due to the string tension

\[\sigma \rightarrow \sigma(B, \theta) \simeq \sigma \left(1 - c_2^\sigma(B) \cos 2\theta \right) \]

- Anisotropy still visible at $T > 0$
- Observations agree picture with deconfinement catalysis

Possible implications:

- In meson production in heavy ion collisions [Guo et al. ’15]
- Heavy meson spectrum $c\bar{c}$ and $b\bar{b}$ [Alford and Strickland ’13, Bonati et al ’15]
conclusions and summary

Investigation of the effect of B on the $Q\bar{Q}$ interaction \[\text{arXiv:1607.08160}\]

- The static potential becomes anisotropic $V(r) \rightarrow V(r, \theta, B)$
- Genuine effects in the continuum limit
- Modifications mostly due to the string tension

\[\sigma \rightarrow \sigma(B, \theta) \simeq \sigma \left(1 - c_2^\sigma(B) \cos 2\theta\right)\]

- Anisotropy still visible at $T > 0$
- Observations agree picture with deconfinement catalysis

Possible implications:

- In meson production in heavy ion collisions \[\text{Guo et al. '15}\]
- Heavy meson spectrum $c\bar{c}$ and $b\bar{b}$ \[\text{Alford and Strickland '13, Bonati et al '15}\]

THANK YOU
backup magnetic field on the lattice

With $\vec{B} \parallel \hat{z}$, a possible choice of the abelian links is

$$u_{i; y}^f = e^{ia^2q_fB_iz_i} \quad u_{i; x}^f|_{i_x=L_x} = e^{-ia^2q_fL_xB_iz_i}$$

and all the other equal to 1.

A general $\vec{B} = (B_x, B_y, B_z)$:

- The quantization condition

$$|q_{\text{min}}|B = \frac{2\pi b}{a^2N_xN_y} \quad b \in \mathbb{Z}$$

applies separately along each coordinate axis.

- If $N_x = N_y = N_z$ the condition is the same and hence

$$\vec{B} \propto \vec{b} = (b_x, b_y, b_z)$$

- Phase in the fermion matrix is the product
backup anisotropy at T=0

The $\mathcal{O}(B)$ values are accessible computing the quantities

$$R^\mathcal{O}(|e|B) = \frac{\mathcal{O}_{XY}(|e|B) + \mathcal{O}_Z(|e|B)}{2\mathcal{O}(|e|B = 0)}$$

$$= \frac{\tilde{\mathcal{O}}(|e|B)}{\mathcal{O}(|e|B = 0)} \left(1 - \sum_{n \text{ even}} \frac{c^{\mathcal{O}}_{2n}}{c^{\mathcal{O}}_{2n}}\right) \approx \frac{\tilde{\mathcal{O}}(|e|B)}{\mathcal{O}(|e|B = 0)}$$

and are compatible with those at $B = 0$
Extension to large fields (at $a = 0.0989$ fm on $48^3 \times 96$)

- longitudinal string tension seems to vanish for $|e|B \sim 4 \text{ GeV}^2$
- problem: cut-off effects at $|e|B \sim 1/a^2 \sim 4 \text{ GeV}^2$