Effects of magnetic fields on qq interactions

C.Bonati¹, M.D'Elia¹, M.Mariti¹, M.Mesiti¹, F.Negro¹, *A.Rucci*¹, F.Sanfilippo²

¹Department of Physics of University of Pisa and INFN Pisa, Italy ²School of Physics and Astronomy, University of Southampton, UK

Lattice 2016, 34th International Symposium on Lattice Field Theory 28 July 2016

table of contents

Introduction

- Effects of the magnetic field on the static potential at T=0
- What happens at finite temperatures? $(T < T_c)$
- Conclusions

intro physical conditions

QCD with strong magnetic fields $eB\simeq m_\pi^2\sim 10^{15-16}~{\rm T}$

- \blacksquare Non-central heavy ion collisions with $eB \sim 10^{15} T$ [Skokov et al. '09]
- Possible production in early universe eB $\sim 10^{16} T$ [Vachaspati '91]

In heavy ion collisions

- Expected eB \simeq 0.3 GeV² at LHC in Pb+Pb at $\sqrt{s_{NN}}$ =4.5TeV and b=4fm
- Timescales depend on thermal medium properties (most pessimistic case: 0.1-0.5 fm/c)
- Spatial distribution of the field and lifetime are still debated

intro turning on the B field

An external magnetic field *B* on the lattice is introduced through abelian parallel transports $u_{\mu}(n)$

 Abelian phases enter the Lagrangian by modifying the covariant derivative

 $U_{\mu}(n) \rightarrow U_{\mu}(n)u_{\mu}(n)$

 External field is fixed: non-propagating fields, no kinetic term

Periodic boundary conditions lead to the quantization condition

$$|q_{\min}|B=rac{2\pi b}{a^2N_xN_y}$$
 $b\in\mathbb{Z}$

intro static potential

In the confining phase at low temperatures, the $Q\bar{Q}$ interaction is well described by the Cornell potential

$$V_{\mathcal{C}}(r) = -rac{lpha}{r} + \sigma r + V_0 \qquad \sigma \simeq (440 {
m MeV})^2 \quad lpha \sim 0.4$$

On the lattice:

At T=0 it can be extracted from the Wilson loop

$$aV(aec{n}) = -\lim_{n_t o \infty} \log\left(rac{\langle W(ec{n},n_t+1)
angle}{\langle W(ec{n},n_t)
angle}
ight)$$

■ For T>0 from Polyakov loop correlators

$$F(a\vec{n},T) \simeq -aN_t \log \langle \text{Tr}L^{\dagger}(\vec{r}+\vec{n})\text{Tr}L(\vec{n}) \rangle$$

what about the effects of \vec{B} on the potential? (a first study: [Bonati et al. '14])

T=0 setup and continuum results at B=0

Numerical setup

- tree-level improved gauge action
- $N_f=2+1$ rooted staggered fermions + stout improvement
- four lattices $48^3 \times 96$, 40^4 , 32^4 and 24^4
- spacing a \simeq 0.1 fm to a \simeq 0.24 fm
- simulations at physical quark masses

T=0 angular dependence

Turning on a constant uniform external field: residual rotation symmetry around \vec{B} survives. Our ansatz:

$$V(r, \theta) = -rac{lpha(heta, B)}{r} + \sigma(heta, B)r + V_0(heta, B)$$

with θ angle between quarks direction and \vec{B} .

Angular dependence in Fourier expansion:

$$\mathcal{O}(\theta, B) = \bar{\mathcal{O}}(B) \left(1 - \sum_{n=1} c_{2n}^{\mathcal{O}}(B) \cos(2n\theta)\right) \qquad \mathcal{O} = \alpha, \sigma, V_0$$

General features:

- Assumption: $V(r, \theta)$ is in the Cornell form $\forall \theta$
- c_{2n+1} terms vanish (\vec{B} inversion $\theta \rightarrow \pi \theta$)

T=0 angular dependence

Some details:

- fixed |e|B ~ 1.0 GeV² on two lattices aL ~ 5 fm (|b| = 32)
- Wilson loop averaged separately on orthogonal axes
- Access to 8 angles using three B orientations

Results:

- potential is anisotropic and
 V(r, θ) increases with θ
- good description in terms of c₂'s only (~ 0.2 - 0.3)
- $\overline{\mathcal{O}}(B)$ compatible with values at B = 0

T=0 anisotropy in the continuum

Questions:

- Does the anisotropy survive when $a \rightarrow 0$?
- Dependence to B?

Simplify the task:

Angular dependence is fully described by the lowest coefficients *c*₂s

$$\implies$$

All the informations accessed by studying the potential along two directions only

For each $\mathcal{O} = \sigma, \alpha, V_0$ we can study its anisotropy (with $\vec{B} \parallel \hat{z}$)

$$\delta^{\mathcal{O}}(\boldsymbol{B}) = \frac{\mathcal{O}_{XY}(\boldsymbol{B}) - \mathcal{O}_{Z}(\boldsymbol{B})}{\mathcal{O}_{XY}(\boldsymbol{B}) + \mathcal{O}_{Z}(\boldsymbol{B})}$$

then

$$\delta^{\mathcal{O}} \simeq \boldsymbol{c}_2^{\mathcal{O}}$$

T=0 anisotropy in the continuum

Continuum extrapolation using

$$\mathcal{C}_{2}^{\mathcal{O}} = \mathcal{A}^{\mathcal{O}}(1 + \mathcal{C}^{\mathcal{O}}a^{2})(|e|B)^{\mathcal{D}^{\mathcal{O}}(1 + E^{\mathcal{O}}a^{2})} \qquad \mathcal{O} = \sigma, \alpha, V_{0}$$

Results:

- anisotropy c_2^{σ} of the string tension survives $a \rightarrow 0$
- c_2^{α} and $c_2^{V_0}$ compatible with zero
- $\overline{\mathcal{O}}(B)$ all compatible with values at B = 0

T>0 effects on the free energy

what about (not so) high temperatures?

Setup:

- Fixed a=0.0989 fm on lattices $48^3 \times N_t$ with N_t=14,16,20 (T \lesssim T_c)
- Several magnetic quanta b=0 to b=64 with $\mathrm{B}//\mathrm{z}$

Results:

- Anisotropy still visible but disappears at large r
- String tension σ decreases
- Cornell form fits only at small B

T>0 effects on the free energy

From our results:

- Decrease of the free energy as B grows
- The effect is enhanced as *T* reaches *T_c*

This is compatible with a decrease of T_c due to B [Bali et al.'12]

- Suppression of confining properties is evident before the appearance of *inverse chiral magnetic catalysis*
- Hence it seems to be the dominant phenomenon

conclusions and summary

Investigation of the effect of *B* on the $Q\bar{Q}$ interaction [arXiv:1607.08160]

- The static potential becomes anisotropic $V(r) \rightarrow V(r, \theta, B)$
- Genuine effects in the continuum limit
- Modifications mostly due to the string tension

$$\sigma \to \sigma(\boldsymbol{B}, \theta) \simeq \sigma \Big(1 - \boldsymbol{c}_2^{\sigma}(\boldsymbol{B}) \cos 2\theta \Big)$$

- Anisotropy still visible at T > 0
- Observations agree picture with deconfinement catalysis

Possible implications:

- In meson production in heavy ion collisions [Guo et al. '15]
- Heavy meson spectrum cc̄ and bb̄ [Alford and Strickland '13, Bonati et al '15]

conclusions and summary

Investigation of the effect of *B* on the $Q\bar{Q}$ interaction [arXiv:1607.08160]

- The static potential becomes anisotropic $V(r) \rightarrow V(r, \theta, B)$
- Genuine effects in the continuum limit
- Modifications mostly due to the string tension

$$\sigma \to \sigma(\boldsymbol{B}, \theta) \simeq \sigma \Big(1 - \boldsymbol{c}_2^{\sigma}(\boldsymbol{B}) \cos 2\theta \Big)$$

- Anisotropy still visible at T > 0
- Observations agree picture with deconfinement catalysis

Possible implications:

- In meson production in heavy ion collisions [Guo et al. '15]
- Heavy meson spectrum cc̄ and bb̄ [Alford and Strickland '13, Bonati et al '15]

THANK YOU

backup magnetic field on the lattice

With $\vec{B} \parallel \hat{z}$, a possible choice of the abelian links is

$$u_{i;y}^{f} = \boldsymbol{e}^{ia^{2}q_{i}B_{z}i_{x}} \quad u_{i;x}^{f}|_{i_{x}=L_{x}} = \boldsymbol{e}^{-ia^{2}q_{i}L_{x}B_{z}i_{y}}$$

and all the other equal to 1.

- A general $\vec{B} = (B_x, B_y, B_z)$:
 - The quantization condition

$$|q_{\min}|B=rac{2\pi b}{a^2N_xN_y}$$
 $b\in\mathbb{Z}$

applies separately along each coordinate axis.

■ If $N_x = N_y = N_z$ the condition is the same and hence $\vec{B} \propto \vec{b} = (b_x, b_y, b_z)$

Phase in the fermion matrix is the product

backup anisotropy at T=0

The $\mathcal{O}(B)$ values are accessible computing the quantities

$$\begin{aligned} R^{\mathcal{O}}(|e|B) &= \frac{\mathcal{O}_{XY}(|e|B) + \mathcal{O}_{Z}(|e|B)}{2\mathcal{O}(|e|B = 0)} \\ &= \frac{\bar{\mathcal{O}}(|e|B)}{\mathcal{O}(|e|B = 0)} \left(1 - \sum_{n \text{ even}} c_{2n}^{\mathcal{O}}\right) \simeq \frac{\bar{\mathcal{O}}(|e|B)}{\mathcal{O}(|e|B = 0)} \end{aligned}$$

and are compatible with those at B = 0

backup large B

Extension to large fields (at a = 0.0989 fm on $48^3 \times 96$)

- Iongitudinal string tension seems to vanish for $|e|B \sim 4 \text{ GeV}^2$
- **\blacksquare** problem: cut-off effects at $|e|B \sim 1/a^2 \sim 4 \text{ GeV}^2$

