Nucleon spin and quark content at the physical point

C. Alexandrou

University of Cyprus, The Cyprus Institute, and DESY-Zeuthen

with

M. Constantinou, K. Hadjiyiannakou, K. Jansen, Ch. Kallidonis, G. Koutsou, A. Vaquero, Ch. Wiese

The XXXIV International Symposium on Lattice Field Theory Southampton, 24 - 30 July 2016

Outline

Wilson twisted mass lattice QCD

Hadron spectrum

2

Nucleon structure

- Nucleon charges: g_A , g_s , g_T
- First moments: $\langle x \rangle_q$, $\langle x \rangle_{\Delta q}$, $\langle x \rangle_{\delta q}$
- Nucleon spin

Simulations by the European Twisted Mass Collaboration (ETMC)

We report on the analysis of an $N_f = 2$ ensemble of twisted mass plus a clover term simulated at a physical value of the pion mass, referred as the *Physical ensemble*, (ETMC) A. Abdel-Rehim *et al.* :1507.04936, 1507.05068, 1411.6842, 1311.4522

Parameters: lattice size $48^3 \times 96$, a = 0.093(1) fm, $m_{\pi} = 0.1312(13)$ GeV

Wilson tmQCD at maximal twist, R. Frezzotti, G. C. Rossi, JHEP 0408 (2004) 007

- Automatic O(a) improvement
- No operator improvement needed, renormalization simplified → important for hadron structure

Wilson twisted mass lattice QCD

Simulations by the European Twisted Mass Collaboration (ETMC)

We report on the analysis of an $N_f = 2$ ensemble of twisted mass plus a clover term simulated at a physical value of the pion mass, referred as the *Physical ensemble*, (ETMC) A. Abdel-Rehim *et al.* :1507.04936, 1507.05068, 1411.6842, 1311.4522

Parameters: lattice size $48^3 \times 96$, a = 0.093(1) fm, $m_{\pi} = 0.1312(13)$ GeV

- Use exact deflation to speed-up the inversions and do multiple sources on each gauge configuration
- Use domain decomposition multi-grid (DD-αAMG) adapted for twisted mass fermions, Talk by S. Bacchio, Algorithms and Machines, Wednesday, 10:00

Hadron spectrum

Results on hadron masses using the physical ensemble, 357 configurations

Recent results by other collaborations:

- Hyperons:
 - W. Bietenholz et al. (QCDSF-UKQCD) et al., Phys.Rev. D84, 054509 (2011), 1102.5300.
 - S. Durr et al., Science 322, 1224 (2008), 0906.3599
- Charmed baryons:
 - P. Perez-Rubio, S. Collins, and G. S. Bali, arXiv:1503.08440
 - Y. Namekawa et al. (PACS-CS Collaboration), Phys.Rev. D87(9), 094512 (2013), 1301.4743
 - R. A. Briceno, H.-W. Lin, and D. R. Bolton, Phys. Rev. D86, 094504 (2012), 1207.3536.
 - L. Liu, H.-W. Lin, K. Orginos, and A. Walker-Loud, Phys. Rev. D81, 094505 (2010), 0909.3294

Nucleon spin and quark content

Nucleon charges: g_A, g_s, g_T

- scalar operator: $\mathcal{O}_{S}^{a} = \bar{\psi}(x) \frac{\tau^{a}}{2} \psi(x)$
- axial-vector operator: $\mathcal{O}_{A}^{a} = \bar{\psi}(x)\gamma^{\mu}\gamma_{5}\frac{\tau^{a}}{2}\psi(x)$ ٥
- tensor operator: $\mathcal{O}_{T}^{a} = \bar{\psi}(x)\sigma^{\mu\nu}\frac{\tau^{a}}{2}\psi(x)$ ۲

 \implies extract from ratio: $\langle N(\vec{p'}) \mathcal{O}_X N(\vec{p}) \rangle |_{q^2=0}$ to obtain g_s, g_A, g_T

- isovector combination has no disconnected contributions;
- g_A well-known experimentally; ۰
- Predict g_T , to be measured at JLab; •
- Predict g_S

Nucleon charges: g_A

- $N_f = 2$ twisted mass plus clover, $48^3 \times 96$, a = 0.093(1) fm, $m_{\pi} = 131$ MeV
- 9264 statistics
- 3 sink-source time separations ranging from 0.9 fm to 1.5 fm

At the physical point we find from the plateau method: $g_A = 1.22(3)(2)$, where the first error is statistical and the second systematic determined by the difference between the values from the plateau and two-state fits. A. Abdel-Rehim *et al.* (ETMC):1507.04936, 1507.05068, 1411.6842, 1311.4522

Nucleon charges: gs, gT

Updated results using $N_f = 2$ twisted mass fermions with a clover term at a physical value of the pion mass, $48^3 \times 96$ and a = 0.093(1) fm with ~ 9260 statistics for $t_s/a = 10, 12, 14, \sim 48000$ for $t_s/a = 16$ and ~ 70000 for $t_s/a = 18$.

• $g_S^{\text{isov}} = 0.93(25)(33)$ • $g_T^{\text{isov}} = 1.00(2)(1)$

where the first error is statistical and the second systematic determined by the difference between the values from the plateau and two-state fits.

Summary of results on nucleon charges: gA, gs, gT

- g_A at the physical point requires further study for larger t_s . Important to keep constant error \rightarrow we need large statistics
- New analysis of COMPASS and Belle data: $g_T^{u-d} = 0.81(44)$, M. R. A. Courtoy, A. Bacchettad, M. Guagnellia, arXiv: 1503.03495
- For g_S increasing the sink-source time separation to ~ 1.5 fm is crucial but more statistics are needed to settle its value.

Disconnected contributions to g_A^q

Updated results using $N_f = 2$ twisted mass fermions with a clover term at a physical value of the pion mass, $48^3 \times 96$ and a = 0.093(1) fm

Disconnected isoscalar axial charge

Strange axial charge, Talk by A. Vaquero, Hadron Structure, Thursday 17:30

We find from the plateau method:

- $g_A^{u+d} = -0.15(2)$ with 854,400 statistics
- Combining with the isovector we find: $g_A^u = 0.828(21), g_A^d = -0.387(21)$
- $g_A^s = -0.042(10)$ with 861,200 statistics

Scalar g_S and Tensor g_T charges

Updated results using $N_f = 2$ twisted mass fermions with a clover term at a physical value of the pion mass, $48^3 \times 96$ and a = 0.093(1) fm with ~ 9260 statistics for $t_s/a = 10, 12, 14, \sim 48000$ for $t_s/a = 16$ and ~ 70000 for $t_s/a = 18$.

At the physical point we find from the plateau method:

where the first error is statistical and the second error on the connected is the systematic determined by the difference between the values from the plateau and two-state fits.

A. Abdel-Rehim et al. (ETMC):1507.04936, 1507.05068, 1411.6842, 1311.4522

Scalar g_S and Tensor g_T charges

Updated results using $N_f = 2$ twisted mass fermions with a clover term at a physical value of the pion mass, $48^3 \times 96$ and a = 0.093(1) fm with ~ 9260 statistics for $t_s/a = 10, 12, 14, \sim 48000$ for $t_s/a = 16$ and ~ 70000 for $t_s/a = 18$.

Disconnected isoscalar scalar charge, MS at 2 GeV

At the physical point we find from the plateau method:

•
$$g_S^{u+d} = 8.25(51)(13)$$
 (conn); 1.25(26) (disconn) $\rightarrow g_S^u = 5.21(31), g_S^d = 4.28(31)$

• g_T^{u+d} =0.584(16)(17) (conn); 0.0007(11) (disconn) $\rightarrow g_T^u = 0.795(13), g_T^d = -0.210(13)$

where the first error is statistical and the second error on the connected is the systematic determined by the difference between the values from the plateau and two-state fits.

A. Abdel-Rehim et al. (ETMC):1507.04936, 1507.05068, 1411.6842, 1311.4522

The quark content of the nucleon

- $\sigma_f \equiv m_f \langle N | \bar{q}_f q_f | N \rangle$: measures the explicit breaking of chiral symmetry Largest uncertainty in interpreting experiments for dark matter searches - Higgs-nucleon coupling depends on σ , J. Ellis, K. Olive, C. Savage, arXiv:0801.3656
- In lattice QCD:
 - Feynman-Hellmann theorem: $\sigma_l = m_l \frac{\partial m_N}{\partial m_l}$
 - Similarly $\sigma_s = m_s \frac{\partial m_N}{\partial m_s}$
 - ▶ Direct computation of the scalar matrix element, A. Abdel-Rehim et al. arXiv:1601.3656, PRL116 (2016) 252001

The quark content of the nucleon

- $\sigma_f \equiv m_f \langle N | \bar{q}_t q_f | N \rangle$: measures the explicit breaking of chiral symmetry Largest uncertainty in interpreting experiments for dark matter searches - Higgs-nucleon coupling depends on σ , J. Ellis, K. Olive, C. Savage, arXiv:0801.3656
- In lattice QCD:
 - Feynman-Hellmann theorem: $\sigma_l = m_l \frac{\partial m_N}{\partial m_l}$

Similarly $\sigma_s = m_s \frac{\partial m_N}{\partial m_s}$

Direct computation of the scalar matrix element, A. Abdel-Rehim et al. arXiv:1601.3656, PRL116 (2016) 252001

First moments of PDFs for the nucleon

- Unpolarized moment: $\langle x \rangle_q = \int_0^1 dx \, x \, [q(x) + \bar{q}(x)]$
- Helicity moment: $\langle x \rangle_{\Delta q} = \int_0^1 dx \, x \left[\Delta q(x) \Delta \bar{q}(x) \right]$

• Transversity moment: $\langle x \rangle_{\delta q} = \int_0^1 dx x \left[\delta q(x) + \delta \bar{q}(x) \right]$

 $q(x) = q(x)_{\downarrow} + q(x)_{\uparrow}$ $\Delta q(x) = q(x)_{\downarrow} - q(x)_{\uparrow}$ $\delta q(x) = q(x)_{\perp} + q(x)_{\top}$

Momentum fraction $\langle x \rangle_{u-d}$, helicity $\langle x \rangle_{u-d}$ and transversity $\langle x \rangle_{u-d}$

Updated results using $N_t = 2$ twisted mass fermions with a clover term at a physical value of the pion mass, $48^3 \times 96$ and a = 0.093(1) fm with ~ 9260 statistics for $t_s/a = 10, 12, 14, \sim 48000$ for $t_s/a = 16$ and ~ 70000 for $t_s/a = 18$.

At the physical point we find in the $\overline{\rm MS}$ at 2 GeV from the plateau method:

• $\langle x \rangle_{u-d} = 0.206(14)(5)$ and $\langle x \rangle_{u+d+s} = 0.63(12)$.

 $\langle x \rangle_{u+d+s}$ is perturbatively renormalized to one-loop due to its mixing with the gluon operator.

- $\langle x \rangle_{\Delta u \Delta d} = 0.259(9)(10)$
- $\langle x \rangle_{\delta u \delta d} = 0.273(17)(18)$

The first error is statistical and the second systematic determined by the difference between the values from the plateau and two-state fits.

A. Abdel-Rehim et al. (ETMC):1507.04936, 1507.05068, 1411.6842, 1311.4522

Gluon content of the nucleon

- Gluons carry a significant amount of momentum and spin in the nucleon
 - Compute gluon momentum fraction : $\langle x \rangle_g = A_{20}^g$
 - Compute gluon spin: $J_g = \frac{1}{2}(A_{20}^g + B_{20}^g)$
- Nucleon matrix of the gluon operator: $O_{\mu\nu} = -G_{\mu\rho}G_{\nu\rho}$ \rightarrow gluon momentum fraction extracted from $\langle N(0)|O_{44} - \frac{1}{3}O_{jj}|N(0)\rangle = m_N < x >_g$

- Disconnected correlation function, known to be very noisy
- ⇒ we employ several steps of stout smearing in order to remove fluctuations in the gauge field
- Results are computed on the $N_f = 2$ ensemble at the physical point, $m_{\pi} = 131$ MeV, a = 0.093 fm, $V = 48^3 \times 96$, A. Abdel-Rehim *et al.* (ETMC):1507.04936
- The methodology was tested for N_f = 2 + 1 + 1 twisted mass at m_π = 373 MeV, C. Alexandrou, V. Drach, K. Hadjiyiannakou, K. Jansen, B. Kostrzewa, C. Wiese, PoS LATTICE2013 (2014) 289

Results for the gluon content

- 2094 gauge configurations with 100 different source positions each → more than 200 000 measurements
- Due to mixing with the quark singlet operator, the renormalization and mixing coefficients had to be extracted from a one-loop perturbative lattice calculation, M. Constantinou and H. Panagopoulos
- $\langle x \rangle_{g,\text{bare}} = 0.318(24) \xrightarrow{\text{Renormalization}} \langle x \rangle_g^R = Z_{gg} \langle x \rangle_g + Z_{gq} \langle x \rangle_{u+d+s} = 0.317(24)(13)$. The renormalization is perturbatively done using two-levels of stout smearing. The systematic error is the difference between using one- and two-levels of stout smearing.
- Momentum sum is satisfied: $\sum_{q} \langle x \rangle_{q} + \langle x \rangle_{g} = \langle x \rangle_{u+d}^{Cl} + \langle x \rangle_{u+d+s}^{Dl} + \langle x \rangle_{g} = 0.945(126)(13)$

Nucleon spin?

Spin sum:
$$\frac{1}{2} = \sum_{q} \underbrace{\left(\frac{1}{2}\Delta\Sigma^{q} + L^{q}\right)}_{J^{q}} + J^{G}$$

 $J^{q} = A^{q}_{20}(0) + B^{q}_{20}(0) \text{ and } \Delta\Sigma^{q} = g^{q}_{A}$

Disconnected contribution using $\mathcal{O}(210500)$ statistics

 \implies Total spin for u-quarks $J^u < 0.3$ and for d-quark $J^d \sim 0$

ΔΣ^{u,d} consistent with experimental values after disconnected contributions are included

Nucleon spin?

Spin sum:
$$\frac{1}{2} = \sum_{q} \underbrace{\left(\frac{1}{2}\Delta\Sigma^{q} + L^{q}\right)}_{J^{q}} + J^{G}$$

 $J^{q} = A_{20}^{q}(0) + B_{20}^{q}(0) \text{ and } \Delta\Sigma^{q} = g_{A}^{q}$

Disconnected contribution using O(210500) statistics

Diconnected contributions affect the value of L^q

Preliminary results: L^u and L^d increase if disconnected are included

Conclusions

- Results at the physical point are now directly accessible High statistics and careful cross-checks are needed → noise reduction techniques are crucial e.g. AMA, TSM, smearing etc
- Evaluation of quark loop diagrams has become feasible even at the physical point!
- Confirmation of experimentally known quantities such as g_A will enable reliable predictions of others \rightarrow provide insight into the structure of hadrons and input that is crucial for new physics such as the nucleon σ -terms, g_s and g_T

Thank you for your attention