Nucleon electromagnetic and axial form factors with $N_{\rm f}$ =2 twisted mass fermions at the physical point

^{a,b}C. Alexandrou, ^bM. Constantinou, ^cK. Hadjiyiannakou, ^dK. Jansen, ^bC. Kallidonis, ^b<u>G. Koutsou</u>, ^eK. Ottnad, ^fA. Vaquero

^aDepartment of Physics, University of Cyprus

^bComputation-based Science and Technology Research Centre (CaSToRC), The Cyprus Institute

^cDepartment of Physics, George Washington University, Washington DC

^dDESY-Zeuthen

eInstitut für Strahlen- und Kernphysik, Universität Bonn

^fINFN Sezione Milano Bicocca

Lattice 2016, 25th – 30th July 2016, Southampton, UK

Outline

★ Introduction and motivation

- Proton radius
- Axial matrix elements

★ Setup and method

- Form factors from the lattice
- Lattice setup

★ Results

- Axial form factors
- Electromagnetic form factors

\star Summary and outlook

Introduction and motivation

★ Axial and Electromagnetic Form Factors Insight on structure of nucleon

- Slope at $Q^2 \rightarrow 0$: Electric and magnetic radii (or Dirac and Pauli)
- $G_A(Q^2 = 0) = g_A$ Nucleon axial charge
- $G_M(Q^2 = 0) = \mu_N$ Nucleon magnetic moment
- \blacktriangleright Input to determination of M_A
- $G_p(Q^2)$ test pion pole dominance expectation

CaSToRC

★ Proton spin puzzle

- Discrepancy between electron scattering and muonic hydrogen Lamb shifts
- Need ~2% accuracy on $\langle r_p^2 \rangle$ to contact experiment
 - Large separations for suppressing excited state effects major challenge
 - Disconnected contributions to obtain up- and down-quark contributions

 or equivalently, proton and neutron contributions

Lattice 2016, 25th – 30th July 2016

Form factor decomposition

★ Axial form factors

$$\langle N(p',s')|A_{\mu}^{3}|N(p,s)\rangle = i\sqrt{\frac{m_{N}^{2}}{E_{N}(\vec{p'})E_{N}(\vec{p})}}\bar{u}(p',s')[\gamma_{\mu}\gamma_{5}G_{A}(q^{2}) + \frac{q_{\mu}\gamma_{5}}{2m_{N}}G_{p}(q^{2})]\frac{1}{2}u_{N}(p,s)$$
with:

$$A^3_{\mu}(x) = \bar{\psi}(x)\gamma_{\mu}\gamma_5 \frac{\tau^2}{2}\psi(x)$$
, and $\psi = \begin{pmatrix} u \\ d \end{pmatrix}$

★ Electromagnetic

$$\langle N(p',s')|j_{\mu}|N(p,s)\rangle = \sqrt{\frac{m_N^2}{E_N(\vec{p'})E_N(\vec{p})}} \bar{u}(p',s')[\gamma_{\mu}F_1(q^2) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_N}F_2(q^2)]u_N(p,s)$$

 j_{μ} : lattice conserved current

 ${\cal F}_1$ and ${\cal F}_2,$ Dirac and Pauli form factors, alternatively, define Sachs electromagnetic form factors:

$$G_E(q^2) = F_1(q^2) + \frac{q^2}{(2m_N)^2} F_2(q^2) \qquad \qquad G_M(q^2) = F_1(q^2) + F_2(q^2)$$

Lattice 2016, 25th – 30th July 2016

Form factors from the lattice

Form factor extraction

- **★** Four projectors: • One unpolarised: $\Gamma_0 = \frac{1 + \gamma_0}{4}$ • Three polarised: $\Gamma_k = i \gamma_5 \gamma_k \Gamma_0$
- **★** Final state at rest: $\vec{p}' = 0$, $\vec{q} = -\vec{p}$

★ Electromagnetic form factors $\Pi^{0}(\Gamma_{0};\vec{q}) = C \frac{E_{N} + m_{N}}{2m_{N}} G_{E}(Q^{2})$ $\Pi^i(\Gamma_0; \vec{q}) = C \frac{q_i}{2m_N} G_E(Q^2)$

$$\Pi^{i}(\Gamma_{k};\vec{q}) = C \frac{\epsilon_{ijk}q_{j}}{2m_{N}} G_{M}(Q^{2})$$
$$C = \sqrt{\frac{2m_{N}^{2}}{E_{N}(E_{N}+m_{N})}}$$

★ Axial form factors

$$\Pi^{i}(\Gamma_{k};\vec{q}) = \frac{iC}{4m_{N}} \left[\frac{q_{k}q_{i}}{2m_{N}}G_{p}(Q^{2}) - (E_{N} + m_{N})\delta_{ik}G_{A}(Q^{2})\right]$$

$$\sum_{n=1}^{N} \frac{(\sum_{m=1}^{2} D_{nm} G_m - \Pi_n)^2}{w_n^2}$$

 Minimise, via the singular value decomposition of D, where G is the vector of wanted form factors

Lattice 2016, 25th – 30th July 2016

Lattice parameters

★ Lattice ensemble

- $N_{\rm f}$ =2 twisted mass with clover term
- ▶ 48³96 lattice sites
- a = 0.093(1) fm determined from nucleon mass
- Appx. 3000 independent configurations
- ▶ *m*_π=0.132(1) GeV

★ Three-point functions

HE CODRUS

- $t_s = 10a$, 12a, $14a \approx 0.9$ fm, 1.1 fm, 1.3 fm
 - 580 configs. \times 16 randomised source locations
 - Four polarisations: Γ_0 , Γ_1 , Γ_2 , Γ_3
- $t_s = 16a$, $18a \approx 1.5$ fm, 1.7 fm
 - * 530 and 725 configs. resp. \times 88 randomised source locations

Lattice 2016, 25th – 30th July 2016

• One polarisation: Γ_0

 G_E, G_M, G_A, G_p

CaSToRC

 G_E

Plateaus and summation fits

★ Plateaus and summation method fits example

- Contact points omitted in summation
- Different statistics for different sink source separations \longrightarrow fits in bootstrap throughout

P The Cyprus Institute

Lattice 2016, 25th – 30th July 2016

Axial form factors: G_A(Q²), G_p(Q²)

Lattice 2016, 25th – 30th July 2016

★ Axial form factor

The Cyprus Institute

Lattice 2016, 25th – 30th July 2016

★ Axial form factor

Lattice 2016, 25th – 30th July 2016

★ Axial form factor

THE CYPRUS INSTITUTE

Lattice 2016, 25th – 30th July 2016

★ Axial form factor

Lattice 2016, 25th – 30th July 2016

★ Induced pseudo-scalar form factor

Lattice 2016, 25th – 30th July 2016

Electromagnetic form factors

Lattice 2016, 25th – 30th July 2016

★ Isovector electric Sachs form factor

Lattice 2016, 25th – 30th July 2016

★ Isovector electric Sachs form factor

THE CYPRUS INSTITUTE

Lattice 2016, 25th – 30th July 2016

★ Isovector electric Sachs form factor

Lattice 2016, 25th – 30th July 2016

THE CYPRUS

★ Isovector magnetic Sachs form factor

Lattice 2016, 25th – 30th July 2016

THE CYPRUS

★ Isovector magnetic Sachs form factor

Lattice 2016, 25th — 30th July 2016

Dirac and Pauli isovector form factors

 $F_i(Q^2) = \frac{F_i(0)}{(1 + \frac{Q^2}{M^2})^2}$ $F_1(0) = 1, F_2(0)$ allowed to vary

THE CYPRUS

Electric and Dirac radii

Comparison of recent results near or at physical pion mass

PNDME, arXiv:1306.5435

THE CYPRUS

increasing sink-source separations

Lattice 2016, 25th – 30th July 2016

Conclusions – outlook

★ Outlook: position space methodS for radius

- Preliminary results using few momenta
- Radius consistent within large error
- Applied to 370 MeV in arXiv:1605.07327

Lattice 2016, 25th – 30th July 2016

Conclusions – outlook

★ Direct physical point calculation of axial and EM form factors

- Separations up to 1.3 or 1.7 fm
- Still observe excited state effects in radii

\star Axial form factors

- Axial pole mass within error of latest analysis of experimental data
- Excited state continuation \longrightarrow larger pole mass

★ Electromagnetic form factors

- Radii approaching experimental values with increasing separations
- Still more statistics and larger separations needed though
- May need ~2 fm separation and O(10⁵) statistics
- $G_M(Q^2 \rightarrow 0)$ still puzzling, excited state effects seem mild

BONUS

Lattice 2016, 25th – 30th July 2016

Proton and neutron [ignoring disconnected]

Disconnected diagram contributions being assessed

[see talk by A. Vaquero, Thu. 17:30]

Lattice 2016, 25th – 30th July 2016

Error of form factors and radii

★ Variance estimate

- Note that different sink-source separations have different statistics
- Exponential suppression: $(m_N-3/2m_\pi)$ consistent with nucleon mass at all momentum transfers

Lattice 2016, 25th – 30th July 2016