THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

LATTICE

2016

Two-flavor simulations of the ρ (770) and the role of the $K\overline{K}$ channel

<u>B. Hu¹</u>, R. Molina¹, M. Döring^{1,2}, A. Alexandru¹, ¹The George Washington University ²Thomas Jefferson National Accelerator Facility arXiv:1605.04823v1

34th International Symposium on Lattice Field Theory, July 2016

A recent lattice QCD study (GWU16) noted that the ρ mass extracted from N_f =2 simulations is lighter than its physical value. This is also supported by an independent calculation from the RQCD Collaboration [1] very close to the physical mass.

Lang 11 [Lang, Mohler, Prelovsek, Vidmar, PRD (2011)], CP-PACS07 [S. Aoki *et al.*, PRD (2007)] GWU16 [Guo, Alexandru, Molina, Döring, (2016)], RQCD16 [Bali *et al.*, PRD (2016)]

A recent lattice QCD study (GWU16) noted that the ρ mass extracted from N_f =2 simulations is lighter than its physical value. This is also supported by an independent calculation from the RQCD Collaboration [1] very close to the physical mass.

Lang 11 [Lang, Mohler, Prelovsek, Vidmar, PRD (2011)], CP-PACS07 [S. Aoki *et al.*, PRD (2007)] GWU16 [Guo, Alexandru, Molina, Döring, (2016)], RQCD16 [Bali *et al.*, PRD (2016)]

A recent lattice QCD study (GWU16) noted that the ρ mass extracted from N_f =2 simulations is lighter than its physical value. This is also supported by an independent calculation from the RQCD Collaboration [1] very close to the physical mass.

PACS-CS11 [Ishizuka PRD (2011)], HadSpec [J. J. Dudek et al. PRD (2013); Wilson, Briceño, Dudek, Edwards, Thomas, PRD (2015)], BMW13/15 [Dürr et al. PRD (2013)]

A recent lattice QCD study (GWU16) noted that the ρ mass extracted from N_f =2 simulations is lighter than its physical value. This is also supported by an independent calculation from the RQCD Collaboration [1] very close to the physical mass.

PACS-CS11 [Ishizuka PRD (2011)], **HadSpecI** [J. J. Dudek *et al.* PRD (2013); Wilson *et al.*, PRD (2015)], **BMW13/15** [Dürr *et al.* PRD (2013)]

The Contribution of virtual Kaons (simple analogy)

The Contribution of virtual Kaons

The Contribution of virtual Kaons

above threshold) needs to be checked

Coupled channel scattering/Inverse amplitude method¹

¹Based on Oller, Oset, Pelaez, PRD (1998).

Formulas

To fit the lattice phase shifts, the $K\overline{K}$ channel is removed from the coupledchannel $\pi\pi$ / $K\overline{K}$ system (including SU(3)/SU(2) matching of LECs).

To fit the lattice phase shifts, the $K\overline{K}$ channel is removed from the coupledchannel $\pi\pi$ / $K\overline{K}$ system (including SU(3)/SU(2) matching of LECs). $N_f = 2$ lattice phase shifts are fitted with low energy constants including the known correlation between energy and phase shift (Lüscher function).

To fit the lattice phase shifts, the $K\overline{K}$ channel is removed from the coupledchannel $\pi\pi$ / $K\overline{K}$ system (including SU(3)/SU(2) matching of LECs). $N_f = 2$ lattice phase shifts are fitted with low energy constants including the known correlation between energy and phase shift (Lüscher function).

The result is extrapolated to the physical pion mass M_{π} = 138 MeV and then $K\overline{K}$ channel is switched on \rightarrow postdiction of experimental phaseshifts.

To fit the lattice phase shifts, the $K\overline{K}$ channel is removed from the coupledchannel $\pi\pi$ / $K\overline{K}$ system (including SU(3)/SU(2) matching of LECs). $N_f = 2$ lattice phase shifts are fitted with low energy constants including the known correlation between energy and phase shift (Lüscher function).

The result is extrapolated to the physical pion mass M_{π} = 138 MeV and then $K\overline{K}$ channel is switched on \rightarrow postdiction of experimental phaseshifts.

Unknown LECs taken from fit to experiment

To fit the lattice phase shifts, the $K\overline{K}$ channel is removed from the coupledchannel $\pi\pi$ / $K\overline{K}$ system (including SU(3)/SU(2) matching of LECs). $N_f = 2$ lattice phase shifts are fitted with low energy constants including the known correlation between energy and phase shift (Lüscher function).

The result is extrapolated to the physical pion mass M_{π} = 138 MeV and then $K\overline{K}$ channel is switched on->postdiction of experimental phaseshifts.

Express final results in terms of common notation, Breit-Wigner m_{ρ} : ρ mass, g: $\rho\pi\pi$ coupling.

Unknown LECs taken from fit to experiment

Results for the $N_f = 2$ simulations

Lattice phase shifts to be included in the fit are chosen in the maximal range around the resonance position, in which the fit passes Pearson's χ^2 test at a 90% upper confidence limit.

Experimental data: blue circles from [Estabrooks, Martin, (1974)], squares from [Protopopescu et al., (1973)].

200 M_π=227MeV GWU16 M_{π} =138MeV GWU16 5-9-9-9-9-4-4 4 150 Jo 100 SU(2) extrapolation 50 SU(3) extrapolation Estabrooks, Martin, (1974) Protopopescu et al., (1973) 0 M_π=138MeV QCDSF08 M_π=240,250,390MeV QCDSF08 200 150- 0 100 SU(2) extrapolation 50 SU(3) extrapolation Estabrooks, Martin, (1974) Protopopescu et al., (1973) 0 600 1000 1200 700 800 900 800 500 600 1000 1100 W[MeV] W[MeV]

Results for the $N_f = 2$ simulations

Results for the $N_f = 2$ simulations

Results for the $N_f = 2$ simulations

Resonance mass extrapolation

Red curve: an N_f =2 extrapolation based on the fit to (GWU16) data. Blue band: inclusion of the $K\overline{K}$ channel (systematic error only).

Inelasticity from $K\overline{K}$ channel

Experimental inelasticity [Protopopescu et al., PRD (1973)], Roy-Steiner [Büttiker et al. EPJ C (2004)].

Conclusion

The $K\overline{K}$ channel improves the extrapolations of the mass significantly except when the lattice data have large uncertainties.

Explains the systematically small lattice masses at the physical point after the chiral SU(2) extrapolation (or, directly, Bali result).

Conclusion

The $K\overline{K}$ channel improves the extrapolations of the mass significantly except when the lattice data have large uncertainties.

Explains the systematically small lattice masses at the physical point after the chiral SU(2) extrapolation (or, directly, Bali result).

Slight over-extrapolation

Confirmation with full 1loop UCHPT needed

GWU (Guo/Alexandru) test: Including valence strange quark does not change ρ mass. > If $K\overline{K}$ is really strong, the effect comes from sea quarks .

> $N_f = 2$, $N_f = 2 + 1$ simulations within same Lattice QCD simulation needed for confirmation.

Thanks Iuguka

NLO CHPT Lagrangian¹

$$\mathcal{L}_{2} = \frac{f^{2}}{4} \langle \partial_{\mu} U^{\dagger} \partial^{\mu} + M(U + U^{\dagger}) \rangle$$

$$U(\phi) = \exp(i\sqrt{2}\Phi/f)$$

$$\Phi(x) = \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^{0} \\ K^{-} & \overline{K}^{0} & -\frac{2}{\sqrt{6}}\eta \end{pmatrix}_{\mu}$$

$$\mathcal{L}_{4} = L_{1} \langle \partial_{\mu} U^{\dagger} \partial^{\mu} U \rangle^{2} + L_{2} \langle \partial_{\mu} U^{\dagger} \partial_{\nu} U \rangle \langle \partial^{\mu} U^{\dagger} \partial^{\nu} U \rangle$$

$$+ L_{3} \langle \partial_{\mu} U^{\dagger} \partial^{\mu} U \partial_{\nu} U^{\dagger} \partial^{\nu} U \rangle + L_{4} \langle \partial U^{\dagger} \partial^{\mu} U \rangle \langle U^{\dagger} M + M^{\dagger} U \rangle$$

$$+ L_{5} \langle \partial_{\mu} U^{\dagger} \partial^{\mu} U(U^{\dagger} M + M^{\dagger} U) \rangle + L_{6} \langle U^{\dagger} M + M^{\dagger} U \rangle^{2}$$

$$+ L_{7} \langle U^{\dagger} M - M^{\dagger} U \rangle^{2} + L_{8} \langle M^{\dagger} U M^{\dagger} U + U^{\dagger} M U^{\dagger} M \rangle$$

$$M = \begin{pmatrix} m_{\pi}^{2} & 0 & 0 \\ 0 & m_{\pi}^{2} & 0 \\ 0 & 0 & 2m_{K}^{2} - m_{\pi}^{2} \end{pmatrix}$$

¹[Oller, Oset, Pelaez, PRD (1999)].

Inverse amplitude method¹

$$S = \begin{pmatrix} \eta e^{2i\delta_1} & i(1-\eta^2)^{1/2}e^{i(\delta_1+\delta_2)} \\ i(1-\eta^2)^{1/2}e^{i(\delta_1+\delta_2)} & \eta e^{2i\delta_2} \end{pmatrix}$$

$$(T)_{11} = -\frac{8\pi W}{2ip_1}[(S)_{11}-1] , \qquad (T)_{22} = -\frac{8\pi W}{2ip_2}[(S)_{22}-1]$$

$$(T)_{12} = (T)_{21} = -\frac{8\pi W}{2i\sqrt{p_1p_2}}(S)_{12}$$

$$T = [I - V^{\text{IAM}}G]^{-1}V^{\text{IAM}} \qquad \mathbf{V} = \begin{pmatrix} V_{\pi\pi\to\pi\pi} & V_{\pi\pi\to K\bar{K}} \\ V_{K\bar{K}\to\pi\pi} & V_{K\bar{K}\to K\bar{K}} \end{pmatrix}$$

$$V^{\rm IAM} = V_2 [V_2 - V_4]^{-1} V_2$$

¹[Oller, Oset, Pelaez, PRD (1999)].

G-function and V-matrices¹

¹[Guo, Alexandru, Molina, Döring, (2016)], l_i^r : [Gasser, Leutwyler, Nucl. Phys. B (1985)]

Meson mass and decay constants¹

$$\begin{split} M_{\pi}^{2} &= M_{0\pi}^{2} \left[1 + \mu_{\pi} - \frac{\mu_{\eta}}{3} + \frac{16M_{0K}^{2}}{f_{0}^{2}} \left(2L_{6}^{r} - L_{4}^{r} \right) \right. \\ &+ \frac{8M_{0\pi}^{2}}{f_{0}^{2}} \left(2L_{6}^{r} + 2L_{8}^{r} - L_{4}^{r} - L_{5}^{r} \right) \right], \\ M_{K}^{2} &= M_{0K}^{2} \left[1 + \frac{2\mu_{\eta}}{3} + \frac{8M_{0\pi}^{2}}{f_{0}^{2}} \left(2L_{6}^{r} - L_{4}^{r} \right) \right. \\ &+ \frac{8M_{0K}^{2}}{f_{0}^{2}} \left(4L_{6}^{r} + 2L_{8}^{r} - 2L_{4}^{r} - L_{5}^{r} \right) \right], \\ M_{\eta}^{2} &= M_{0\eta}^{2} \left[1 + 2\mu_{K} - \frac{4}{3}\mu_{\eta} + \frac{8M_{0\eta}^{2}}{f_{0}^{2}} \left(2L_{8}^{r} - L_{5}^{r} \right) \right. \\ &+ \frac{8}{f_{0}^{2}} \left(2M_{0K}^{2} + M_{0\pi}^{2} \right) \left(2L_{6}^{r} - L_{4}^{r} \right) \right] \\ &+ M_{0\pi}^{2} \left[-\mu_{\pi} + \frac{2}{3}\mu_{K} + \frac{1}{3}\mu_{\eta} \right] \\ &+ \frac{128}{9f_{0}^{2}} \left(M_{0K}^{2} - M_{0\pi}^{2} \right)^{2} \left(3L_{7} + L_{8}^{r} \right), \end{split}$$

with

$$\mu_P = \frac{M_{0P}^2}{32\pi^2 f_0^2} \log \frac{M_{0P}^2}{\mu^2}, \qquad P = \pi, K, \eta .$$

$$f_{\pi} = f_0 \left[1 - 2\mu_{\pi} - \mu_K + \frac{4M_0^2_{\pi}}{f_0^2} \left(L_4^r + L_5^r \right) + \frac{8M_0^2_K}{f_0^2} L_4^r \right],$$

$$\begin{split} f_K &= f_0 \left[1 - \frac{3\mu_\pi}{4} - \frac{3\mu_K}{2} - \frac{3\mu_\eta}{4} + \frac{4M_{0\,\pi}^2}{f_0^2} L_4^r \right. \\ &+ \left. \frac{4M_{0\,K}^2}{f_0^2} \left(2L_4^r + L_5^r \right) \right], \\ f_\eta &= f_0 \left[1 - 3\mu_K + \frac{4L_4^r}{f_0^2} \left(M_{0\,\pi}^2 + 2M_{0\,K}^2 \right) + \frac{4M_{0\,\eta}^2}{f_0^2} L_5^r \right] \;. \end{split}$$

In the above equations, f_0 is the pion decay constant in the chiral limit, $4\pi f_0 \cong 1.2$ GeV, μ is the regularization scale, commonly fixed at $\mu = M_\rho$, and L_i^r s, with $i = 1 \sim 8$, are the Low Energy Constants, superscript r stand for a dependence on the regularization scale μ . L_i^r s for f_i are obtained from fit to lattice data in [Nebreda, Pelaez]¹.

¹[Nebreda, Pelaez., PRD (2010)].

Inclined error bar fit

68% confidence ellipses in l_1 , l_2

Breit-Wigner ρ masses of the ρ meson

	Μπ	BW	BW,converted	N _f =2 extrapolated	N _f =2+1 extrapolated	
RQCD[1]	149	715(16)(21)	714	704	770(8)(3)	
GWU16 <mark>[2]</mark>	227	749.2(1.6)(15)	749	721	776(3)(10)	
	315	795.5(0.7)(16)	795	724	778(4)(11)	
QCDSF08[5]	240	770(10)	776	730	779(7)(6)	
	250	784(10)	781			
	390	846(10)	844			
Lang11[3]	266	772(6)(8)	774	720	776(5)(9)	
ETMC11 <u>[6]</u>	290	980(31)	983	821	827(46)(0.4)	
	330	1033(31)	1031			
CP-PACS07[7]	328	808(24)(25)	833	750	786(>100)(>100)	

Second column: Pion masses of respective studies [MeV]. Third column: ρ masses as quoted or extracted from pictures in the respective publications. Fourth column: Breit-Wigner ρ masses as reconstructed from our UCHPT solutions at unphysical pion masses. Fifth column: SU(2) extrapolated fits at physical pion mass. Sixth column: Final results after including the $K\overline{K}$ channel. Uncertainties (statistical, systematic) only quoted for these cases.

Scattering lengths and effective ranges

	Exp./ CHPT	RQCD 16	GWU16		QCDSF	Lang11	ETMC	CP-
			<i>M</i> _π = 227	<i>M</i> _π = 315	08		11	PACS07
$10a_{1}^{1}$	0.38 ±0.02 (exp.)	0.37 ± 0.31	0.349 <u>+</u> 0.003	0.350 <u>+</u> 0.001	0.345 <u>+</u> 0.003	0.348 <u>+</u> 0.005	0.367 <u>+</u> 0.003	0.34 ± 0.67
$100b_{1}^{1}$	0.48 [$\mathcal{O}(p^4)$] 0.79 [$\mathcal{O}(p^6)$]	1.14±2 9.1	0.683 <u>+</u> 0.065	0.627 <u>+</u> 0.023	0.695± 0.113	0.656 <u>+</u> 0.136	0.911 ± 0.092	0.701± 40

Scattering lengths a_1^1 and effective ranges b_1^1 . The experimental value, the $\mathcal{O}(p^4)$, and the $\mathcal{O}(p^6)$ results are taken from Ref. [12].

Ref. [12] [Bijnens, Colangelo, Ecker, Gasser, Sainio, Nucl. Phys. B (1997)].

Estimate systematic uncertainties

$$V_2(E) = -\begin{pmatrix} \frac{2p_{\pi}^2}{3f_{\pi}^2} & \frac{\sqrt{2}p_K p_{\pi}}{3f_K f_{\pi}}\\ \frac{\sqrt{2}p_K p_{\pi}}{3f_K f_{\pi}} & \frac{p_K^2}{3f_K^2} \end{pmatrix}$$

$$V_{4}(E) = -1 \times \begin{pmatrix} \frac{8p_{\pi}^{2}(2\hat{l}_{1})m_{\pi}^{2} - \hat{l}_{2}E^{2})}{3f_{\pi}^{4}} & \frac{8p_{\pi}p_{K}(L_{5}(m_{K}^{2} + m_{\pi}^{2}) - L_{3}E^{2})}{3\sqrt{2}f_{\pi}^{2}f_{K}^{2}} \\ \frac{8p_{\pi}p_{K}(L_{5}(m_{K}^{2} + m_{\pi}^{2}) - L_{3}E^{2})}{3\sqrt{2}f_{\pi}^{2}f_{K}^{2}} & \frac{4p_{K}^{2}(10\hat{l}_{1})m_{K}^{2} + 3(L_{3} - 2\hat{l}_{2})E^{2})}{9f_{K}^{4}} \end{pmatrix}$$

 $\hat{l_1}$ and $\hat{l_2}$ in green circles: from fit to $N_f = 2$ lattice phase shifts.

- $\hat{l_1}$ and $\hat{l_2}$ in purple circles:
- 1. from fit to experimental phase shifts.
- 2. from fit to N_f = 2 lattice phase shifts.
 →Do both, the difference is estimated as systematic/model error.

 L_3 and L_5 in red circles: from fit to experimental phase shifts.

Further tests

Results of different subtractions

We test the dependence of the results on the value of the subtraction constant, changing it from the default value $a = -1.28^{1}$ to a = -0.8 and a = -1.7. The global fits to experimental phase shifts visibly deteriorate for these extreme values, e.g., for πK scattering, but barely change in the ρ channel (less than 10 MeV in m_{ρ} and less than 0.08 in g) as experimental phase-shift data are more precise.

Effects of the kaon tadpoles

If one goes from SU(2) to SU(3), actually the $\pi\pi \rightarrow \pi\pi$ transition changes by a tiny bit, given by so-called kaon tadpoles² we have checked that they indeed change nothing (resonance positions by < 1 MeV).

¹ [Guo, Alexandru, Molina, Döring, (2016)], ²[Gasser, Leutwyler, Nucl. Phys. B (1985)]

References

- [1] G. S. Bali et al. [RQCD Collaboration], Phys. Rev. D 93, 054509 (2016).
- [2] D. Guo, A. Alexandru, R. Molina, and M. Döring, arXiv:1605.03993 [hep-lat].

[3] C. B. Lang, D. Mohler, S. Prelovsek and M. Vidmar, Phys. Rev. D 84, 054503 (2011); Erratum: [Phys. Rev. D 89, 059903 (2014)].

- [4] S. Aoki et al. [CP-PACS Collaboration], Phys. Rev. D 76, 094506 (2007) .
- [5] M. Göckeler et al. [QCDSF Collaboration], PoS LATTICE 2008, 136 (2008).
- [6] X. Feng, K. Jansen and D. B. Renner, Phys. Rev. D 83, 094505 (2011).
- [7] D. J. Wilson, R. A. Briceño, J. J. Dudek, R. G. Edwards and C. E. Thomas, Phys. Rev. D 92, 094502 (2015).
- [8] S. D. Protopopescu et al., Phys. Rev. D 7, 1279 (1973).
- [9] F. Niecknig, B. Kubis and S. P. Schneider, Eur. Phys. J. C 72, 2014 (2012).
- [10] P. Büttiker, S. Descotes-Genon and B. Moussallam, Eur. Phys. J. C 33, 409 (2004).
- [11] S. Eidelman and L. Lukaszuk, Phys. Lett. B 582, 27 (2004).

[12] J. Bijnens, G. Colangelo, G. Ecker, J. Gasser and M. E. Sainio, Nucl. Phys. B **508**, 263 (1997) Erratum: [Nucl. Phys. B **517**, 639 (1998)].

- [13] J. A. Oller, E. Oset and J. R. Pelaez, Phys. Rev. D **59**, 074001 (1999); Erratum: [Phys. Rev. D **60**, 099906 (1999)]; Erratum: [Phys. Rev. D **75**, 099903 (2007)].
- [14] J. Nebreda and J. R. Pelaez., Phys. Rev. D 81, 054035 (2010) .
- [15] J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 465 (1985).
- [16] P. Estabrooks and A. D. Martin, Nucl. Phys. B 79, 301 (1974).
- [17] J. J. Dudek et al. [Hadron Spectrum Collaboration], Phys. Rev. D 87, 034505 (2013); Erratum: [Phys. Rev. D 90, 099902 (2014)].
- [18] Ishizuka [PACS-CS Collaboration] PoS LATTICE2011 (2011) 125 arXiv:1111.0377 [hep-lat].

[19] Stephan Dürr, Zoltán Fodor, Christian Hoelbling, Stefan Krieg, Thorsten Kurth, Laurent Lellouch, Thomas Lippert, Rehan Malak, Thibaut Métivet, Antonin Portelli, Alfonso Sastre, Kálmán Szabó Phys. Rev. D **90**, 114504 (2014).

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

