Spectrum and mass anomalous dimension of SU(2) gauge theories with fermions in the adjoint representation: from $N_f = 1/2$ to $N_f = 2$

Georg Bergner ITP AEC Bern

Southampton: July, 2016

- 1 Adjoint QCD and Technicolour theories
- 2 Final results for minimal walking technicolour
- 3 New results for $N_f = 3/2$
- 4 Comparison with $N_f = 1$ and $N_f = 1/2$

5 Conclusions

In collaboration with I. Montvay, G. Münster, S. Piemonte, P. Giudice, A. Athenodorou, E. Bennett, B. Lucini

Conformal window for adjoint QCD

Technicolour candidates (more "natural" EW sector):

- requirement: close to conformal (walking) behaviour, large γ_m, light scalar
- \Rightarrow non-perturbative probelm

This work

- conformal window for adjoint representation
- conformal mass spectrum: $M \sim m^{1/(1+\gamma_m)}$ characterised by constant mass ratios
- mass anomalous dimension $\gamma_*(N_f)$

[Dietrich, Sannino, hep-ph/0611341]

Adjoint QCD

adjoint N_f flavour QCD:

$$\mathcal{L} = \operatorname{Tr}\left[-\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \sum_{i}^{N_{f}}\bar{\psi}_{i}(\not D + m)\psi_{i}\right]$$

$$D_{\mu}\psi = \partial_{\mu}\psi + ig[A_{\mu},\psi]$$

- $\bullet \ \psi$ Dirac-Fermion in the adjoint representation
- adjoint representation allows Majorana condition $\psi = C \bar{\psi}^T$
- \Rightarrow half integer values of N_f : $2N_f$ Majorana flavours

Chiral symmetry breaking:

$$SU(2N_f) \rightarrow SO(2N_f)$$

Particle states and lattice action

Lattice action

- Wilson fermion action + stout smearing
- tree level Symanzik improved gauge action
- some results: clover improvement

Particle states

- triplet mesons m_{PS}, m_S, m_V, m_{PV}
- glueball 0⁺⁺
- spin-1/2 mixed fermion-gluon state

$$\sum_{\mu,\nu} \sigma_{\mu\nu} \mathrm{tr} \left[F^{\mu\nu} \lambda \right]$$

• singlet mesons m_{a-f_0} , $m_{a-\eta'}$

Particle spectrum of Minimal Walking Technicolour

Expected behaviour of a (near) conformal theory:

- constant mass ratios
- light scalar (0⁺⁺)
- no light Goldstone (m_{PS})

Particle spectrum of Minimal Walking Technicolour: smaller lattice spacing

- remnant β dependence
- gap between glueball and m_{PS} increased

Particle spectrum of Minimal Walking Technicolour: finite size effects

- large finite size effects at small m_{PCAC}
- limited mass range to fit constant ratio

Particle spectrum of Minimal Walking Technicolour: singlet meson channel

- scalar singlet meson lighter or comparable to m_{PS}
- glueball 0⁺⁺ overlap with ground state significantly better

Particle spectrum of Minimal Walking Technicolour: results for mass ratios

State	$\beta = 1.5$	$\beta = 1.7$	[Del Debbio et al. 1512.08242]
mV	1.0825(58)	1.051(12)	1.044(43)
mS	1.285(24)	1.190(14)	1.222(52)
m _{PV}	1.329(21)	1.232(13)	1.26(35)
m_{0++}	0.620(35)	0.398(48)	0.458(15)
\check{F}_{π}	0.1831(23)	0.15156(72)	0.178(5)
$m_{1/2}$	0.948(24)	0.86394(52)	-
m _{PCAC} range	0.1808(22)- 0.2490(12)	0.2457(12)-0.26776(42)	0.1872(84)-0.2323(35)
am _{PS} range	0.29986(46)- 0.58848(98)	0.5360(25) - 0.57247(16)	0.6401(11) - 1.183(1)

- significant difference between $\beta=1.5$ and $\beta=1.7$
- $\beta = 1.5$ results compatible with earlier investigations
- ullet results of [Del Debbio et al., 1512.08242] between $\beta=1.5$ and $\beta=1.7$

Mass anomalous dimension for Minimal Walking Technicolour: Methods

Methods for determination of γ_* :

- scaling of mass spectrum
- mode number (integrated spectral density of $D^{\dagger}D$)

Methods for mode number determination:

- Chebyshev expansion of the spectral density
- consistency with [Giusti, Lüscher, 0812.3638] checked

Mass anomalous dimension for Minimal Walking Technicolour: Results

Mass spectrum:

- results cover a large range, only most precise ones considered
- larger β : tendency towards smaller γ_*

Mode number:

- $\beta = 1.5$ result consistent with [Del Debbio et al., 1512.08242] (0.371(20))
- $\beta = 1.7$ considerably smaller γ_*
- tendency towards clover improved results 0.20(3) [Rantaharju et al., 1510.03335]

Observable	β	γ_*
m _{PS}	1.5	0.2958(45)
mV	1.5	0.295(26)
F_{π}	1.5	0.391(20)
average	1.5	0.300(20)
m _{PS}	1.7	0.289(17)
mV	1.7	0.263(28)
F_{π}	1.7	0.265(12)
average	1.7	0.272(11)

$N_s \times N_t$	β	κ	γ
24×64	1.5	0.1325	0.39(3)
32×64	1.5	0.1335	0.38(1)
48×64	1.5	0.1344	0.380(10)
32×64	1.5	0.1350	0.375(4)
average	1.5		0.376(3)
32×64	1.7	0.1285	0.270(15)
32×64	1.7	0.1290	0.260(20)
32×64	1.7	0.1300	0.285(15)
average	1.7		0.274(10)

New results for $N_f = 3/2$

- γ_* from mass spectrum: 0.495(78)
- γ_* from modenumber: $\beta = 1.5$: 0.40(5); $\beta = 1.7$: 0.32(5)
- light scalar, spectrum comparable to the $N_f = 2$ case
- different from MWT: spin-1/2 mass similar to m_V

Comparison with $N_f = 1$ and $N_f = 1/2$

Theory	scalar particle	γ_* small eta	γ_* larger eta
$N_f = 1/2 \text{ SYM}$	part of multiplet	_	-
$N_f = 1$ adj QCD	light	0.92(1)	0.75(4)*
$N_f = 3/2$ adj QCD	light	0.40(5)*	0.32(5)*
$N_f = 2 \text{ adj QCD}$	light	0.376(3)	0.274(10)
			(

(* preliminary)

• SYM: SUSY provides multiplet structure of states, confining

• other theories: light scalar, light spin-1/2 state for $N_f = 2$

Conclusions

- investigation of (near) conformal theory requires careful consideration of lattice artefacts and finite size effects
- further investigations required for the complete systematics of these effects
- MWT: results point towards γ_* even below 0.3
- consistent behaviour: γ_* lower for larger N_f
- properties of interesting candidates for Technicolour extension of the standard model (MWT, UMWT)
- further consequences from relations between different theories: conformal behaviour for the adjoint representation starts at $N_f = 1$, indication for conformality of NMWT ($N_f = 2$ sextet)

[Bergner, Ryttov, Sannino, 1510.01763]