Spectrum and mass anomalous dimension of SU(2) gauge theories with fermions in the adjoint representation: from $N_f = 1/2$ to $N_f = 2$

Georg Bergner
ITP AEC Bern

Southampton: July, 2016
1. Adjoint QCD and Technicolour theories

2. Final results for minimal walking technicolour

3. New results for $N_f = 3/2$

4. Comparison with $N_f = 1$ and $N_f = 1/2$

5. Conclusions

In collaboration with I. Montvay, G. Münster, S. Piemonte, P. Giudice, A. Athenodorou, E. Bennett, B. Lucini
Conformal window for adjoint QCD

Technicolour candidates
(more “natural” EW sector):

- requirement: close to conformal (walking) behaviour, large γ_m, light scalar

\Rightarrow non-perturbative problem

This work

- conformal window for adjoint representation
- conformal mass spectrum: $M \sim m^{1/(1+\gamma_m)}$
 characterised by constant mass ratios
- mass anomalous dimension $\gamma_*(N_f)$

[Dietrich, Sannino, hep-ph/0611341]
Adjoint QCD

adjoint N_f flavour QCD:

$$\mathcal{L} = \text{Tr} \left[-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \sum_{i}^{N_f} \bar{\psi}_i (\slashed{D} + m) \psi_i \right]$$

$$D_{\mu} \psi = \partial_{\mu} \psi + ig [A_{\mu}, \psi]$$

- ψ Dirac-Fermion in the adjoint representation
- adjoint representation allows Majorana condition $\psi = C \bar{\psi}^T$

\Rightarrow half integer values of N_f: $2N_f$ Majorana flavours

Chiral symmetry breaking:

$$\text{SU}(2N_f) \rightarrow \text{SO}(2N_f)$$
Particle states and lattice action

Lattice action
- Wilson fermion action + stout smearing
- tree level Symanzik improved gauge action
- some results: clover improvement

Particle states
- triplet mesons m_{PS}, m_S, m_V, m_{PV}
- glueball 0^{++}
- spin-1/2 mixed fermion-gluon state
 \[\sum_{\mu, \nu} \sigma_{\mu \nu} \text{tr} [F^{\mu \nu} \lambda] \]
- singlet mesons m_{a-f_0}, $m_{a-\eta'}$
Expected behaviour of a (near) conformal theory:

- constant mass ratios
- light scalar (0^{++})
- no light Goldstone (m_{PS})
INTRO $N_f = 2$ $N_f = 3/2$ $N_f = 1, 1/2$ CON

Particle spectrum of Minimal Walking Technicolour: smaller lattice spacing

- remnant β dependence
- gap between glueball and m_{PS} increased
Particle spectrum of Minimal Walking Technicolour: finite size effects

- large finite size effects at small m_{PCAC}
- limited mass range to fit constant ratio
Particle spectrum of Minimal Walking Technicolour: singlet meson channel

- scalar singlet meson lighter or comparable to m_{PS}
- glueball 0^{++} overlap with ground state significantly better
Particle spectrum of Minimal Walking Technicolour: results for mass ratios

<table>
<thead>
<tr>
<th>State</th>
<th>(\beta = 1.5)</th>
<th>(\beta = 1.7)</th>
<th>[Del Debbio et al. 1512.08242]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_V)</td>
<td>1.0825(58)</td>
<td>1.051(12)</td>
<td>1.044(43)</td>
</tr>
<tr>
<td>(m_S)</td>
<td>1.285(24)</td>
<td>1.190(14)</td>
<td>1.222(52)</td>
</tr>
<tr>
<td>(m_{PV})</td>
<td>1.329(21)</td>
<td>1.232(13)</td>
<td>1.26(35)</td>
</tr>
<tr>
<td>(m_{0^{++}})</td>
<td>0.620(35)</td>
<td>0.398(48)</td>
<td>0.458(15)</td>
</tr>
<tr>
<td>(F_\pi)</td>
<td>0.1831(23)</td>
<td>0.15156(72)</td>
<td>0.178(5)</td>
</tr>
<tr>
<td>(m_{1/2})</td>
<td>0.948(24)</td>
<td>0.86394(52)</td>
<td>–</td>
</tr>
<tr>
<td>(m_{PCAC}) range</td>
<td>0.1808(22)- 0.2490(12)</td>
<td>0.2457(12)-0.26776(42)</td>
<td>0.1872(84)-0.2323(35)</td>
</tr>
<tr>
<td>(m_{PS}) range</td>
<td>0.29986(46)- 0.58848(98)</td>
<td>0.5360(25) - 0.57247(16)</td>
<td>0.6401(11) - 1.183(1)</td>
</tr>
</tbody>
</table>

- significant difference between \(\beta = 1.5 \) and \(\beta = 1.7 \)
- \(\beta = 1.5 \) results compatible with earlier investigations
- results of [Del Debbio et al., 1512.08242] between \(\beta = 1.5 \) and \(\beta = 1.7 \)
Mass anomalous dimension for Minimal Walking Technicolour: Methods

Methods for determination of γ_*:
- scaling of mass spectrum
- mode number (integrated spectral density of $D^\dagger D$)

Methods for mode number determination:
- Chebyshev expansion of the spectral density
- consistency with [Giusti, Lüscher, 0812.3638] checked
Mass anomalous dimension for Minimal Walking Technicolour: Results

Mass spectrum:
- results cover a large range, only most precise ones considered
- larger β: tendency towards smaller γ^*

Mode number:
- $\beta = 1.5$ result consistent with [Del Debbio et al., 1512.08242] $(0.371(20))$
- $\beta = 1.7$ considerably smaller γ^*
- tendency towards clover improved results $0.20(3)$ [Rantaharju et al., 1510.03335]
INTRO

$N_f = 2$ $N_f = 3/2$ $N_f = 1, 1/2$ CON

New results for $N_f = 3/2$

- γ_* from mass spectrum: $0.495(78)$
- γ_* from modenumber: $\beta = 1.5$: $0.40(5)$; $\beta = 1.7$: $0.32(5)$
- light scalar, spectrum comparable to the $N_f = 2$ case
- different from MWT: spin-1/2 mass similar to m_V
Comparison with $N_f = 1$ and $N_f = 1/2$

<table>
<thead>
<tr>
<th>Theory</th>
<th>scalar particle</th>
<th>γ_* small β</th>
<th>γ_* larger β</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_f = 1/2$ SYM</td>
<td>part of multiplet</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>$N_f = 1$ adj QCD</td>
<td>light</td>
<td>0.92(1)</td>
<td>0.75(4)*</td>
</tr>
<tr>
<td>$N_f = 3/2$ adj QCD</td>
<td>light</td>
<td>0.40(5)*</td>
<td>0.32(5)*</td>
</tr>
<tr>
<td>$N_f = 2$ adj QCD</td>
<td>light</td>
<td>0.376(3)</td>
<td>0.274(10)</td>
</tr>
</tbody>
</table>

(*) preliminary

- SYM: SUSY provides multiplet structure of states, confining
- other theories: light scalar, light spin-1/2 state for $N_f = 2$
Conclusions

- investigation of (near) conformal theory requires careful consideration of lattice artefacts and finite size effects
- further investigations required for the complete systematics of these effects
- MWT: results point towards \(\gamma_* \) even below 0.3
- consistent behaviour: \(\gamma_* \) lower for larger \(N_f \)
- properties of interesting candidates for Technicolour extension of the standard model (MWT, UMWT)
- further consequences from relations between different theories: conformal behaviour for the adjoint representation starts at \(N_f = 1 \), indication for conformality of NMWT \((N_f = 2 \text{ sextet}) \)

[Bergner, Ryttov, Sannino, 1510.01763]