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1. BRST-Symmetry Breaking
The so-called minimal Landau gauge in Yang-Mills (YM) theories [1] is ob-
tained by restricting the functional integral to the first Gribov region Ω, given
by the set of transverse gauge configurations for which the Faddeev-Popov (FP)
matrix M is non-negative. On the lattice, this gauge fixing is implemented by
a minimization procedure, without the need to consider the addition of a non-
local horizon-function term γ4Sh to the (Landau-gauge) action, as done in the
Gribov-Zwanziger (GZ) approach in the continuum [2]. In the GZ approach,
the resulting (nonlocal) action may be localized by introducing the auxiliary
fields φab

µ (x) and ωcd
ν (y), yielding SGZ = SYM +Sgf +Saux +Sγ. Here, SYM is the

usual four-dimensional YM action, Sgf is the covariant-gauge-fixing term,

Saux =
∫

d4x
[
φ

ac
µ ∂ν

(
Dab

ν φ
bc
µ

)
−ω

ac
µ ∂ν

(
Dab

ν ω
bc
µ

)
− g0

(
∂νω

ac
µ
)

f abd Dbe
ν η

e
φ

dc
µ

]
,

which is necessary to localize the horizon function, and
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which allows one to fix the γ parameter through the so-called horizon condi-
tion. Also, one can define for these fields a nilpotent BRST transformation s
[3], which is a simple extension of the usual perturbative BRST transforma-
tion that leaves SYM + Sgf invariant. However, in the GZ case, this local BRST
symmetry is broken by terms proportional to a power of the Gribov parameter
γ. Since a nonzero value of γ is related to the restriction of the functional integra-
tion to Ω, it is somewhat natural to expect a breaking of the perturbative BRST
symmetry, as a direct consequence of the nonperturbative gauge-fixing. The
above interpretation is supported by the introduction [4] of a nilpotent nonper-
turbative BRST transformation sγ, which leaves the local GZ action invariant.
The new symmetry is a simple modification of the usual BRST transformation s,
by adding (for some of the fields) a nonlocal term proportional to a power of the
Gribov parameter γ.

2. The Bose-Ghost Propagator
The Gribov parameter γ is not introduced explicitly on the lattice, since in this
case the restriction of gauge-configuration space to the region Ω is achieved by
numerical minimization. Nevertheless, the breaking of the perturbative BRST
symmetry induced by the GZ action may be investigated by the lattice compu-
tation of suitable observables, such as the so-called Bose-ghost propagator

Qabcd
µν (x,y) = 〈s(φ

ab
µ (x)ω
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cd
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cd
ν (y)〉 .

Since this quantity is BRST-exact, with respect to the usual perturbative BRST
transformation s, it should be zero for a BRST-invariant theory but it does not
necessarily vanish if the BRST symmetry s is broken. On the lattice, however,
one does not have direct access to the auxiliary fields (φ

ac
µ ,φac

µ ) and (ωac
µ ,ωac

µ ).
Nevertheless, since these fields enter the continuum action at most quadratically,
we can integrate them out exactly, obtaining for the Bose-ghost propagator an
expression that is suitable for lattice simulations. This yields

Qabcd
µν (x− y) = γ

4
〈

Rab
µ (x)Rcd

ν (y)
〉
, (1)

where

Rac
µ (x) =

∫
d4z(M −1)ae(x,z)Bec

µ (z)

and Bec
µ (z) is given by the covariant derivative Dec

µ (z). One can also note that,
at the classical level, the total derivatives ∂µ(φ

aa
µ +φ

aa
µ ) in the action Sγ can be

neglected [3, 5]. In this case the expression for Bec
µ (z) simplifies to

Bec
µ (z) = g0 f ebc Ab

µ(z) , (2)

as in Ref. [5]. Let us stress that, in both cases, the expression for Qabcd
µν (x− y) in

Eq. (1) depends only on the gauge field Ab
µ(z) and can be evaluated on the lattice.

In fact, all auxiliary fields have been integrated out.

3. Numerical Simulations
The first numerical evaluation of the Bose-ghost propagator in minimal Lan-
dau gauge was presented —for the SU(2) case in four space-time dimensions—
in Ref. [6]. In particular, we evaluated the scalar function Q(k2) defined [for the
SU(Nc) gauge group] through the relation

Qac(k) ≡ Qabcb
µµ (k) ≡ δ

acNc Pµµ(k)Q(k2) ,

where Pµν(k) is the usual transverse projector. This calculation has been ex-
tended in Ref. [7], where we have investigated the approach to the infinite-
volume and continuum limits by considering four different values of the lattice
coupling β and different physical volumes, ranging from about (3.366 f m)4 to
(13.462 f m)4. We find no significant finite-volume effects in the data. As for
discretization effects, we observe small such effects for the coarser lattices,
especially in the IR region. We also tested three different discretizations for the
sources Bbc

µ (x), used in the inversion of the FP matrix M , and find that the data
are fairly independent of the chosen lattice discretization of these sources. Our
results concerning the BRST symmetry-breaking and the form of the Bose-
ghost propagator are similar to the previous analysis [6], i.e. we find a 1/p6 be-
havior at large momenta and a a double-pole singularity at small momenta, in
agreement with the one-loop analysis carried out in Ref. [8].
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4. Results
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In the left plot we show the Bose-ghost propagator Q(k2) as a function of the
(improved) lattice momentum squared p2(k). We plot data for β2 ≈ 2.44, V =
964 (×) and β3 ≈ 2.51, V = 1204 (∗), after applying a matching procedure [9] to
the former set of data. We also plot, for V = 1204, a fit using the fitting function

f (p2) =
c
p4

p2 + s
p4 + u2 p2 + t2 ,

which can be related [see Eq. (3) below] to a massive gluon propagator D(p2)
in combination with an IR-free FP ghost propagator G(p2)∼ 1/p2.
In the right plot we show the Bose-ghost propagator Q(k2) (+) and the product
g2

0 G2(p2)D(p2) (×) as a function of the (improved) lattice momentum squared
p2(k) for the lattice volume V = 1204 at β3 ≈ 2.51. The result

Q(p2) ∼ g2
0 G2(p2)D(p2) , (3)

was obtained in Ref. [5] using a cluster decomposition. The data of the Bose-
ghost propagator have been rescaled in order to agree with the data of the prod-
uct g2

0 G2(p2)D(p2) at the largest momentum.
For both plots we use the sources defined in Eq. (2). Also note the logarithmic
scale on both axes.


