
Introduction to the
Quantum EXpressions
(QEX) framework

drhgfdjhngngfmhgmghmghjmghfmf

James C. Osborn & Xiao-Yong Jin

Argonne Leadership Computing Facility

July 28
Lattice 2016
Southampton, UK

2

Evolution of USQCD SciDAC “C” software

● Shared base (in C): QMP, QIO

● C/C++ data parallel:
QDP+QLA, QDP++

● QOPQDP: solvers, forces, etc.
built on QDP

● Lua application scripting layers on
QDP/QOPQDP: QLUA, FUEL

● Lua scripting provides

– Ease of use

– Rapid development & testing

– Speed of C underneath

● QLA/QDP

– Array of structures

– Originally no threading (now
has OpenMP)

– Needs modern update

3

Evolution of USQCD SciDAC C/Lua software

● Started new framework to experiment with threading and vectorization (QLL)

● Hand written + Lua generated C code

● Well tuned staggered + Naik CG gets 23% of peak on BG/Q

● Started looking for high-level language

– Transform natural expressions into well optimized code

– Have ability to perform optimizations across multiple expressions
(i.e. loop fusion)

● Discovered (nearly*) perfect language for the job: Nim

* “not perfect yet”

4

Nim (nim-lang.org)

● Modern language started in 2008

● Designed to be “efficient, expressive, and elegant”

● Borrows heavily from: Modula 3, Delphi, Ada, C++, Python, Lisp, Oberon

● Statically typed, but has extensive type-inference, so feels like
dynamically-typed scripting language

● Efficient garbage collection (optional)

● Extensive meta-programming support (nearly full language
available at compile time)

● Still young for language

– Current version 0.14.2

– Strong desire to work towards 1.0 (backward stability)

– Small, but growing community (users and developers)

5

Nim

● Nim compiles to C/C++ (also JS, PHP): “one level up” from C/C++

C++ → (clang) → IR → (LLVM) → asm → (as) → obj → (ld) → binary

Nim

● C/C++ backend provides

– Portability

– Easy integration with C/C++ libraries, intrinsics (simd),
pragmas (OpenMP, OpenACC), OpenCL, CUDA(?)

● integrated build system tracks dependencies, compiles and links:

– no Makefile necessary: copy main program, modify, compile

nim c myProject1.nim
nim c myProject2.nim
…

6

Generic and meta-programming features

C++ Nim

preprocessor
macros

templates:
inline code substitutions
also allows overloading, completely hygenic (if desired)

templates generics:
applies to type definitions, procedures, templates and macros
also allows typeclasses, concepts

??? macros:
similar to lisp: syntax tree of arguments passed to macro at
compile time to allow arbitrary manipulation

7

Simple macro example

● Transform loops at compile time

● Standard for loop:

for i in 0..2:
 foo(i)

● macro:

macro forStatic(index: untyped; slice: Slice[int]; body: untyped): stmt = ...

forStatic i, 0..2:
 foo(i)

→

foo(0)
foo(1)
foo(2)

8

Macros for low level optimization

● optimize:
 var t: array[3, tuple[re: vector4double, im: vector4double]]
 …
 t[0].re = ...
 t[0].im = ...
 ...

→

 var t0re: vector4double
 var t0im: vector4double
 …
 foo(t0re)
 foo(t0im)
 …

9

Tensor operations (Xiao-Yong Jin)

● General tensor support in development:

 tensorOps:
 v2 = 0
 v2 += v1 + 0.1
 v3 += m1 * v2

 →

 for j in 0..2:
 v2[j] = 0
 v2[j] += v1[j] + 0.1
 for k in 0..2:
 v3[k] += m1[k,j] * v2[j]

● Can also use Einstein notation (autosummation):

 v1[a] = p[mu,mu,a,b] * v2[b]

10

New lattice framework in Nim: QEX (Quantum EXpressions)

● Using layout/communications framework from QLL
(will eventually convert to Nim, not urgent: Nim works great with C)

● Working example of staggered solver (plain & Naik) & simple meson analysis

● Plan to work on link smearings + HMC next

● Linear algebra undergoing reorganization

– Optimizations and tensor support

● Once more code is running, will shift focus to improving high-level interface

● Code available on github
https://github.com/jcosborn/qex

11

QEX: QCD (or Quantum) Expressions

import qex
import qcdTypes

qexInit()
var lat = [4,4,4,4]
var lo = newLayout(lat)
var v1 = lo.ColorVector()
var v2 = lo.ColorVector()
var m1 = lo.ColorMatrix()
threads:
 m1 := 1
 v1 := 2
 v2 := m1 * v1
 shift(v1, dir=3, len=1, v2) # len=+1: from forward
 single:
 if myRank==0:
 echo v2[0][0] # vector “site” 0, color 0
qexFinalize()

12

QEX/Nim examples

● threads: implementation

template threads*(body:untyped):untyped =
 let tidOld = tid
 let nidOld = nid
 proc tproc =
 {.emit:"#pragma omp parallel".}
 block:
 setupForeignThreadGc()
 tid = ompGetThreadNum()
 nid = ompGetNumThreads()
 body
 tproc()
 tid = tidOld
 nid = nidOld

13

Benchmarks

● Single node KNL Developer Platform

● Intel Xeon Phi CPU 7210

– 64 cores, 4 hardware threads/core

– 16 GB high bandwidth memory

● Benchmark staggered CG (with and without Naik term)

● Volumes L^3 x T
L in {8, 12, 16, 24, 32}
T in {8, 12, 16, 24, 32, 48, 64}
with 64, 128 and 256 threads

● Compiled with gcc 6.1

● Plot solver Gflops versus (volume)^(1/4)

14

Plain (one-link) staggered CG, single precision

15

Naik (one-link + three-link) staggered CG, single precision

16

Plain (one-link) staggered CG, double precision

17

Naik (one-link + three-link) staggered CG, double precision

18

Summary

● Nim offers extremely useful set of features

– Extensive metaprogramming support

– Integrated build system (modules)

– Simple, high-level “script-like” syntax

– Seamless integration with C/C++ code, intrinsics, pragmas, etc.

● New QEX framework written in Nim

– Staggered CG running with good performance on x86 (BG/Q in progress)

– Working on general optimization framework
goal: performance portability across compilers & architectures

– Find more ways to exploit metaprogramming to create easy to use input
“languages” for specific operations: smearing, operator contraction, ...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

