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Eguchi-Kawai volume reduction

O1(b) = lim
N!1

lim
L!1

O(b,N, L)

Eguchi-Kawai reduction 

O1(b) = lim
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O(b,N, L = 1)
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Conditions

Tr (        ) = 0 Center symmetry preserved

Depends on boundary conditions

Depends on matter content

For pbc     L > Lc Narayanan & Neuberger

Pbc with adjoint fermions    Kotvun, Unsal & Yaffe

Z(N)d

Amber,  Basar, Cherman,  Dorigoni, Hanada, Koren, Poppitz,  Sharpe,…

Volume independence of single trace observables if

For tbc     González-Arroyo & Okawak, k̄ / N

Bhanot, Heller & Neuberger



✦ In this talk:

Test volume reduction for Wilson loops in lattice perturbation theory 

with twisted boundary conditions

lattice L4SU(N) gauge theory on a  

logW (b, N, L) = �W1(N, L )! � W2(N, L )! 2

Compare with pbc Heller&Karsch

Compare with infinite volume Weisz, Wetzel & Wohlert



lattice L4
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Twisted boundary conditions

Twist 

González-Arroyo & Okawa

symmetric twist 

k, k̄ / N



Luscher&Weisz, Gonzalez-Arroyo & Korthals-Altes, Snippe

Uµ (n) = e�igA µ (n )�µ (n)

! µ! ! = Z! µ! ! ! µ

n
! µ(n) =

11 fornµ != L " 1

! µ for nµ = L ! 1

       with

       Note: zero momentum not compatible with the boundary conditions

       Periodic links Uµ (n) = Uµ (n + L ö! )

Perturbation theory

       twist eaters



To satisfy b.c. momentum is quantised in units of

Effective box - size 

momentum dependent
basis for the SU(N)
Lie algebra

ö! (p) / ! s1
1 ! s2
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To implement boundary conditions 
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0!

p
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Perturbation theory

• Free propagator identical that on a finite lattice  

L e!

F (p, q, ! p ! q) = !

r
2
N

sin
✓

✓µ !

2
pµ q!

◆

! µ ! =
L 2

e↵

4" 2 ! #̃µ ! !̃

Momentum dependent phases in the vertices

González-Arroyo, Korthals Altes, Okawa

• Momentum quantized in units of  

�(p)

Links to non-commutative gauge theories

L e!

÷! =
2" øk
!

N

økk = 1 (mod
!

N )

• Group structure constants



Vertices                          

In perturbation theory,                           

÷! , " , L e↵

Volume independence                        

For fixed    , volume and N dependence encoded in the effective size                       ÷!
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Comment  

✦ Certain momenta excluded by the twist in SU(N)

nµ = 0 (mod
!

N ) " µ

Exclude

Reintroduces N dependence - gives correct number of degrees of freedom

Tr ö! (p) = 0
Aµ (n) =

1
L2

0!

p

eip (n+ 1
2 ) öAµ (p)ö! (p)

pµ =
2! nµ

L e!

degrees of freedom L 4
e! ! L 4 = L 4(N 2 ! 1)p ! ! L eff \ ! L

! L effLattice of momenta pµ =
2! nµ

L
, ! µ



÷W (R ! T )
1 (N, L, k ) =
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The Wilson loop at✦  O(! )

The same as with pbc but with different set of momenta 

Zero momentum excluded in all cases 
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The Wilson loop at O(! )

    MGP, González-Arroyo & Okawa

N ! "

For PBC

N ! "

retains L dependence

Volume independence

For TBC

W1(N, L ) = F1(L
!

N ) "
1

N 2
F1(L ) "# F1($ )

W1(N, L ) = F1(L )
N 2 ! 1

N 2
!" F1(L )

Heller&Karsch

Effective size correction 1
N 2



The Wilson loop at O(! 2)

W pbc
2 (L, N, k = 0) = (1 !

1
N 2 )F2(L ) + (1 !

1
N 2 )2FW (L)

With periodic boundary conditions Heller&Karsch

Tadpole 
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"
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For  N ! "

W pbc
2 (L,N = 1, k = 0) = F2(L) + FW (L)

retains L dependence

✦  



Non-abelian terms containing the structure constant

NF 2(p, q,! p ! q) = 1 ! cos(! µ ! pµ q! )

1
NL 4

!!

q

F 2

The Wilson loop at            with tbcO(! 2)

It is zero for momenta in ! L

1
L 4
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cos(! µ⌫pµp⌫)

Planar diagrams Non-planar diagrams

Contain all the dependence 
on the twist

The same structure 
as pbc



With twisted boundary conditions 

W tbc
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Volume independence

For TBC

W tbc
2 (L, N = ! , k) = F2(! ) + FW (! )

lim
N !"

F2T = 0

large N limit

Correct
thermodynamic limit

+ F2T (L,N = ! , k)

For volume independence to hold it is essential that



Non-planar diagrams  
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For TBC large V limit

W tbc
2 (L = ! , N, k ) =

!
1 "

1

N 2

"
F2(! ) +

!
1 "

1

N 2

" 2
FW (! )

The formula reproduces the correct infinite volume limit

We have used that F2T goes to zero in the thermodynamic limit 
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F2(L ) = F2(! ) "
R2T2(! 2 + ! !

2 log(L ))
L 4 + . . . Bali e.a.

F2(! )F1(! )

LOOP F1(! ) F2(! ) ÷W2(! , ! ) öW2(! , ! ) K(R,R)

1 " 1 0.125 -0.0027055703(3) 0.0129194297(3) 0.0051069297(3) 0.12013262(2)
2 " 2 0.34232788379 -0.00101077(1) 0.04178022(1) -0.01681397(1) 0.6361389(5)
3 " 3 0.57629826424 0.00295130(2) 0.07498858(2) -0.09107126(2) 1.294258(1)
4 " 4 0.81537096352 0.0076217(1) 0.1095431(1) -0.2228718(1) 1.996582(5)

Table 1 : Values at inÞnite volume of the functions F1 and F2 deÞned in the text. The
next three columns are combinations of these numbers giving the second order coe! cients
÷W2 and öW2 at large N , as well as the parameterK of Ref. [12]

LOOP �2 �02

1 0.00325(10) -0.0026(1)
2 -0.0023(7) -0.0025(2)
3 -0.0036(8) -0.00275(20)
4 -0.005(3) -0.0025(8)

Table 2 : Values of the parameters�2 and �02 entering in the large L expansion of the
function F2 given by Eq. 4.21.

2⇡øk/ öL . This applies rather well to the 2+1 dimensional case both in perturbation theory
and non-perturbatively [34Ð36]. As a matter of fact this idea gives a rough description
of our data points. In Fig. 2 we plot the values of F2T for the plaquette multiplied by
the e" ective volume Ve↵ = L 4N 2. On the x-axis we plot øk/ öL . Di" erent symbols describe
the di" erent values of the independent argumentsøk and L. The plot contains a lot of
information that we will now spell out. First of all, the data does not show any growth
with rising L e↵ at Þxed values oføk/ öL . This is very important since it validates the two
main expectations of our previous discussion: that the functionF2T goes to zero when
either L or N go to inÞnity. Furthermore, it tells us that when the limit is taken at Þxed
÷✓ the approach to zero goes roughly as 1/V e↵ . We cannot exclude logarithmic or other
mild dependencies, but this would hardly change the conclusion. The result can be easily
conÞrmed by studying the L dependence of the values at Þxedøk and N . Our data at
N = 4 , 9, 16, 25, 49 cover a su! ciently large number of L values to get a good Þt to an 1/L 4

dependence (see Fig.3).
Concerning theN dependence the test is complicated by the fact that when we change

öL we are also changingøk/ öL . However, as we slightly change the value oføk/ öL the value
changes only by factors of 2 or so. It is unclear at this stage whether asN gets larger
one approaches a smooth oscillatory function or not. In any case, these changes are small
compared to the large changes in values ofVe↵ . Indeed, the value ofF2T at neighbouring
points sometimes changes by three orders of magnitude. As an example, let us discuss the
results for the rangeøk/ öL # [0.27, 0.3]. We have 13 di" erent values oføk , L and öL which give
data in this region. The values ofF2T themselves change considerably within this set. The
result for L = 1, öL = 7, øk = 2 is 2.28 10�6, which multiplied by the e" ective volume gives

Ð 19 Ð

F2(L ) = F NA
2 (L ) + Fmeas(L )

Numerically
evaluated 

Consistent with
B. Alles e.a 



For Twisted Eguchi-Kawai    L=1

lim
N !"

F2T = 0

W tbc
2 (L = 1 , N, k ) = W pbc

2 (L =
!

N, " , 0) + F2T (L = 1 , N, k )

Non-planar 
contribution  

Effective size  
Effective colour

L =
!

N

N = !

W tbc
1 (L = 1 , N, k ) = W pbc

1 (L =
!

N, " , 0)

Fi (L = 1) = 0Simplification 



Summary

• We have analysed the PT expansion of Wilson loops with tbc

• The expansion is expressed in terms of 3 functions:

F1(L ), F2(L ), F2T (L, N.k )

• Volume independence holds as far as 

lim
N !"

F2T = 0

• Our analysis shows that this holds, also for TEK on the one-site lattice

• The code developed can be applied to other twists and number 
of dimensions


