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Eguchi-Kawai volume reduction

O1(b) = lim
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O(b,N, L)

Eguchi-Kawai reduction 

O1(b) = lim
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O(b,N, L = 1)
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Conditions

Tr (        ) = 0 Center symmetry preserved

Depends on boundary conditions

Depends on matter content

For pbc     L > Lc Narayanan & Neuberger

Pbc with adjoint fermions    Kotvun, Unsal & Yaffe

Z(N)d

Amber,  Basar, Cherman,  Dorigoni, Hanada, Koren, Poppitz,  Sharpe,…

Volume independence of single trace observables if

For tbc     González-Arroyo & Okawak, k̄ / N

Bhanot, Heller & Neuberger



✦ In this talk:

Test volume reduction for Wilson loops in lattice perturbation theory 

with twisted boundary conditions

lattice L4SU(N) gauge theory on a  

logW (b,N, L) = �W1(N,L)��W2(N,L)�2

Compare with pbc Heller&Karsch

Compare with infinite volume Weisz, Wetzel & Wohlert



lattice L4

b =
�

2N2
= ��1

L

S = bN
X

n

X

µ⌫

[N � Zµ⌫(n)Tr(Uµ(n)U⌫(n+ µ̂)U†
µ(n+ ⌫̂)U†

⌫ (n))]

k and        co-prime
p
N

� = g2N

       ’t Hooft coupling

Zµ⌫ =

n
1

exp

n

2⇡i
kp
N

✏µ⌫
o

nµ = n⌫ = L� 1

Twisted boundary conditions

Twist 

González-Arroyo & Okawa

symmetric twist 

k, k̄ / N



Luscher&Weisz, Gonzalez-Arroyo & Korthals-Altes, Snippe

Uµ(n) = e�igAµ(n)�µ(n)

�µ�⌫ = Z⌫µ�⌫�µ

n
�µ(n) =

11 fornµ 6= L� 1

�µ fornµ = L� 1

       with

       Note: zero momentum not compatible with the boundary conditions

       Periodic links Uµ(n) = Uµ(n+ L⌫̂)

Perturbation theory

       twist eaters



To satisfy b.c. momentum is quantised in units of

Effective box - size 

momentum dependent
basis for the SU(N)
Lie algebra

�̂(p) / �s1
1 �s2

2 · · ·�sd
d

Aa
µ(p)Ta

To implement boundary conditions 

Aµ(n) =
1

L2

0X

p

eip(n+
1
2 )Âµ(p)�̂(p)

pµ =
2⇡mµ

Le↵ Le↵ = L
p
N

le↵ = a
p
N

N ! 1, a fixed

le↵ = 1
TEK

thermodynamic limit

L = 1

Aµ(x + l ⌫̂) = �⌫Aµ(x)�†
⌫



Perturbation theory

• Free propagator identical that on a finite lattice  

Le↵

F (p, q,�p� q) = �
r

2
N

sin
✓

✓µ⌫

2
pµq⌫

◆

✓µ⌫ =
L2
e↵

4⇡2
⇥ ✏̃µ⌫ ✓̃

Momentum dependent phases in the vertices

González-Arroyo, Korthals Altes, Okawa

• Momentum quantized in units of  

�(p)

Links to non-commutative gauge theories

Le↵

✓̃ =
2⇡k̄p
N

¯kk = 1 (mod

p
N)

• Group structure constants



Vertices                          

In perturbation theory,                           

✓̃, �, Le↵

Volume independence                        

For fixed    , volume and N dependence encoded in the effective size                       ✓̃

r
2�

Ve↵
sin

⇣✓µ⌫
2

pµq⌫
⌘

Vertices α                



Comment  

✦ Certain momenta excluded by the twist in SU(N)

nµ = 0 (mod

p
N) 8µ

Exclude

Reintroduces N dependence - gives correct number of degrees of freedom

Tr �̂(p) = 0
Aµ(n) =

1

L2

0X

p

eip(n+
1
2 )Âµ(p)�̂(p)

pµ =
2⇡nµ

Le↵

degrees of freedom L4
e↵ � L4 = L4(N2 � 1)p 2 ⇤Leff\⇤L

⇤LeffLattice of momenta pµ =
2⇡nµ

L
, 8µ



W̃ (R⇥T )
1 (N,L, k) =

1

4Ve↵

0X

q

sin2(Rqµ/2) sin
2(Tq⌫/2)

bq 2
µ bq 2

⌫

bq 2
µ + bq 2

⌫

bq2

The Wilson loop at✦  O(�)

The same as with pbc but with different set of momenta 

Zero momentum excluded in all cases 

⇤L

1

Ve↵

0X

q

1

L4
e↵

X

q2⇤0
Leff

� 1

N2L4

X

q2⇤0
L

Exclude momenta in  Momenta in 

⇤0
Leff

⇤0
L

Momenta in 

L   Le↵ = L
p
N

N2



The Wilson loop at O(�)

    MGP, González-Arroyo & Okawa

N ! 1

For PBC

N ! 1

retains L dependence

Volume independence

For TBC

W1(N,L) = F1(L
p
N)� 1

N2
F1(L) �! F1(1)

W1(N,L) = F1(L)
N2 � 1

N2
�! F1(L)

Heller&Karsch

Effective size correction 1

N2



The Wilson loop at O(�2)

W pbc
2 (L,N, k = 0) = (1� 1

N2
)F2(L) + (1� 1

N2
)2FW (L)

With periodic boundary conditions Heller&Karsch

Tadpole 

FW (L) =
1

8

⇣
1� 1

V

⌘
F1(L)

For  N ! 1

W pbc
2 (L,N = 1, k = 0) = F2(L) + FW (L)

retains L dependence

✦  



Non-abelian terms containing the structure constant

NF 2
(p, q,�p� q) = 1� cos(✓µ⌫pµq⌫)

1

NL4

0X

q

F 2

The Wilson loop at            with tbcO(�2)

It is zero for momenta in ⇤L

1

L4
e↵

X

q2⇤0
Leff

� 1

L4
e↵

X

q2⇤0
Leff

cos(✓µ⌫pµp⌫)

Planar diagrams Non-planar diagrams

Contain all the dependence 
on the twist

The same structure 
as pbc



With twisted boundary conditions 

W tbc
2 (L,N, k) =

⇣
F2(L

p
N)� 1

N2
F2(L)

⌘

+
1

8

⇣
1� 1

N2

⌘⇣
F1(L

p
N)� F1(L)

N2

⌘

+F2T (L,N, k)

}
}

Planar
diagrams  

Non-planar
diagrams  

Effective size corrections 
1

N2

twist dependence ✓̃ =
2⇡k̄p
N

¯kk = 1 (mod

p
N)

+
1

N2
FNA
2 (L)

� 1

N2
FNA
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Volume independence

For TBC

W tbc
2 (L,N = 1, k) = F2(1) + FW (1)

lim
N!1

F2T = 0

large N limit

Correct
thermodynamic limit

+F2T (L,N = 1, k)

For volume independence to hold it is essential that



Non-planar diagrams  
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Suppressed as 1/Ve↵
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slower rate 

1/L4�↵
e↵



For TBC large V limit

W tbc
2 (L = 1, N, k) =

⇣
1� 1

N2

⌘
F2(1) +

⇣
1� 1

N2

⌘2
FW (1)

The formula reproduces the correct infinite volume limit

We have used that F2T goes to zero in the thermodynamic limit 
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(�2 + �0

2 log(L))

L4
+ . . . Bali e.a.

F2(1)F1(1)

LOOP F
1

(1) F
2

(1) W̃
2

(1,1) Ŵ
2

(1,1) K(R,R)

1⇥ 1 0.125 -0.0027055703(3) 0.0129194297(3) 0.0051069297(3) 0.12013262(2)

2⇥ 2 0.34232788379 -0.00101077(1) 0.04178022(1) -0.01681397(1) 0.6361389(5)

3⇥ 3 0.57629826424 0.00295130(2) 0.07498858(2) -0.09107126(2) 1.294258(1)

4⇥ 4 0.81537096352 0.0076217(1) 0.1095431(1) -0.2228718(1) 1.996582(5)

Table 1: Values at infinite volume of the functions F
1

and F
2

defined in the text. The

next three columns are combinations of these numbers giving the second order coe�cients

W̃
2

and Ŵ
2

at large N , as well as the parameter K of Ref. [12]

LOOP �
2

�0
2

1 0.00325(10) -0.0026(1)

2 -0.0023(7) -0.0025(2)

3 -0.0036(8) -0.00275(20)

4 -0.005(3) -0.0025(8)

Table 2: Values of the parameters �
2

and �0
2

entering in the large L expansion of the

function F
2

given by Eq. 4.21.

2⇡k̄/L̂. This applies rather well to the 2+1 dimensional case both in perturbation theory

and non-perturbatively [34–36]. As a matter of fact this idea gives a rough description

of our data points. In Fig. 2 we plot the values of F
2T for the plaquette multiplied by

the e↵ective volume V
e↵

= L4N2. On the x-axis we plot k̄/L̂. Di↵erent symbols describe

the di↵erent values of the independent arguments k̄ and L. The plot contains a lot of

information that we will now spell out. First of all, the data does not show any growth

with rising L
e↵

at fixed values of k̄/L̂. This is very important since it validates the two

main expectations of our previous discussion: that the function F
2T goes to zero when

either L or N go to infinity. Furthermore, it tells us that when the limit is taken at fixed

✓̃ the approach to zero goes roughly as 1/V
e↵

. We cannot exclude logarithmic or other

mild dependencies, but this would hardly change the conclusion. The result can be easily

confirmed by studying the L dependence of the values at fixed k̄ and N . Our data at

N = 4, 9, 16, 25, 49 cover a su�ciently large number of L values to get a good fit to an 1/L4

dependence (see Fig. 3).

Concerning the N dependence the test is complicated by the fact that when we change

L̂ we are also changing k̄/L̂. However, as we slightly change the value of k̄/L̂ the value

changes only by factors of 2 or so. It is unclear at this stage whether as N gets larger

one approaches a smooth oscillatory function or not. In any case, these changes are small

compared to the large changes in values of V
e↵

. Indeed, the value of F
2T at neighbouring

points sometimes changes by three orders of magnitude. As an example, let us discuss the

results for the range k̄/L̂ 2 [0.27, 0.3]. We have 13 di↵erent values of k̄ , L and L̂ which give

data in this region. The values of F
2T themselves change considerably within this set. The

result for L = 1, L̂ = 7, k̄ = 2 is 2.28 10�6, which multiplied by the e↵ective volume gives

– 19 –

F2(L) = FNA
2 (L) + Fmeas(L)

Numerically
evaluated 

Consistent with
B. Alles e.a 



For Twisted Eguchi-Kawai    L=1

lim
N!1

F2T = 0

W tbc
2 (L = 1, N, k) = W pbc

2 (L =
p
N,1, 0) + F2T (L = 1, N, k)

Non-planar 
contribution  

Effective size  
Effective colour

L =
p
N

N = 1

W tbc
1 (L = 1, N, k) = W pbc

1 (L =
p
N,1, 0)

Fi(L = 1) = 0Simplification 



Summary

• We have analysed the PT expansion of Wilson loops with tbc

• The expansion is expressed in terms of 3 functions:

F1(L), F2(L), F2T (L,N.k)

• Volume independence holds as far as 

lim
N!1

F2T = 0

• Our analysis shows that this holds, also for TEK on the one-site lattice

• The code developed can be applied to other twists and number 
of dimensions


