Non-Perturbative Renormalization of Nucleon Charges with Automated Perturbative Subtraction

G.M. von Hippel M. Hansen, T. Harris, P. Junnarkar, H. Wittig, L. Wrang

Institute of Nuclear Physics, University of Mainz, Germany

Non-Perturbative Renormalization of Nucleon Charges with Automated Perturbative Subtraction

G.M. von Hippel M. Hansen, T. Harris, P. Junnarkar, H. Wittig, **L. Wrang**

Institute of Nuclear Physics, University of Mainz, Germany

Introduction

- The axial, scalar and tensor charges of the nucleon encode important information about nucleon structure
- Scalar and tensor charges hard to probe experimentally, good theoretical predictions needed
- Charges need to be renormalized
- Perturbative renormalization may not be sufficient: non-perturbative renormalization required, but hard
- Here: demonstrate usefulness of automated lattice perturbation theory in subtracting lattice artifacts

Theoretical setup

Use RI'-MOM scheme [Martinelli et al., 1994] in Landau gauge:

$$\begin{split} \operatorname{tr}_{\scriptscriptstyle CD}\left[S_R^{-1}(\rho)S_{\operatorname{free}}(\rho)\right]\big|_{\rho^2=\mu^2} &= 12, \\ \operatorname{tr}_{\scriptscriptstyle CD}\left[\langle \rho|O_R|\rho\rangle\langle \rho|O_0|\rho\rangle_{\operatorname{free}}^{-1}\right]\big|_{\rho^2=\mu^2} &= 12. \end{split}$$

• Multiplicative renormalization:

$$S_R(p) = Z_q S_0(p),$$

$$O_R = Z_O O_0.$$

Renormalization factors given by

$$\begin{split} Z_q &= \left. \frac{1}{12} \operatorname{tr}_{\scriptscriptstyle CD} \left[S_0^{-1}(\rho) S_{\operatorname{free}}(\rho) \right] \right|_{\rho^2 = \mu^2} \\ Z_O &= \left. \frac{12 Z_q}{\operatorname{tr}_{\scriptscriptstyle CD} \left[\Lambda_O(\rho) \Lambda_O^{\operatorname{free}}(\rho)^{-1} \right] \right|_{\rho^2 = \mu^2}} \end{split}$$

where

$$\Lambda_O(p) = S_0^{-1}(p)G_O(p)S_0^{-1}(p)$$

Calculational setup

Fix to Landau gauge by minimizing

$$W(U) = \sum_{x} \sum_{\mu} \operatorname{tr} \left[U_{\mu}^{\dagger}(x) + U_{\mu}(x) \right]$$

• Use momentum sources [Göckeler et al., 1998] to compute $S(y|p) = D_{yx}^{-1} e^{ip \cdot x}$, whence for $O(x) = \overline{u}(x) \Gamma_O d(x)$

$$S(p) = \left\langle \frac{1}{V} \sum_{x} e^{-ip \cdot x} S(x|p) \right\rangle$$

$$G_O(p) = \left\langle \frac{1}{V} \sum_{x} \gamma_5 S(x|p)^{\dagger} \gamma_5 \Gamma_O S(x|p) \right\rangle$$

- Use diagonal momenta $p=(\mu,\mu,\mu,\mu)$ to reduce O(4) violations with twisted boundary conditions $\psi(x+L_{\nu}e_{\nu})=\mathrm{e}^{i\theta_{\nu}}\psi(x)$ allowing access to intermediate momenta
- Reduce O(4) violations by averaging over H(4) irreps [Göckeler et al., 2010]

$$\operatorname{tr}_{\scriptscriptstyle CD}\left[\Lambda_{\scriptscriptstyle O}(
ho)\Lambda_{\scriptscriptstyle O}^{\scriptscriptstyle free}(
ho)
ight]\mapsto rac{1}{K}\sum_{l=1}^{K}\operatorname{tr}_{\scriptscriptstyle CD}\left[\Lambda_{\scriptscriptstyle O}^{\prime}(
ho)\Lambda_{\scriptscriptstyle O}^{\prime,\mathrm{free}}(
ho)
ight]$$

Measurements

Name	β	<i>a</i> [fm]	Volume	m_{π} [MeV]
A3	5.2	0.0755	64×32^{3}	473
A4				364
A5				316
B6			96×48^3	268
E5	5.3	0.0658	64×32^{3}	457
F6			96×48^{3}	324
F7				277
G8			128×64^3	193
N5	5.5	0.0486	96×48^{3}	429
N6				331
07			128×64^3	261

Use 20 configurations on each ensemble.

• Interpolate in μ on each ensemble, using cubic splines, to get $Z(\beta, m_{\pi}; \mu)$ for arbitrary μ

- Interpolate in μ on each ensemble, using cubic splines, to get $Z(\beta, m_\pi; \mu)$ for arbitrary μ
- Chirally extrapolate for fixed values of μ at each value of β , using a linear $(am_{\pi})^2$ dependence, to get $Z(\beta,0;\mu)$

RGI conversion

- Interpolate in μ on each ensemble, using cubic splines, to get $Z(\beta, m_{\pi}; \mu)$ for arbitrary μ
- Chirally extrapolate for fixed values of μ at each value of β , using a linear $(am_{\pi})^2$ dependence, to get $Z(\beta, 0; \mu)$
- \bullet Convert to $\overline{\rm MS}$ using 3-loop continuum perturbation theory $\left[{\mbox{\scriptsize Gracey 2003}} \right]$

RGI conversion

- Interpolate in μ on each ensemble, using cubic splines, to get $Z(\beta, m_\pi; \mu)$ for arbitrary μ
- Chirally extrapolate for fixed values of μ at each value of β , using a linear $(am_{\pi})^2$ dependence, to get $Z(\beta, 0; \mu)$
- \bullet Convert to $\overline{\rm MS}$ using 3-loop continuum perturbation theory [Gracey 2003]
- ullet Convert to RGI using 3-loop $\overline{
 m MS}$ eta- and γ -functions [Vermaseren, Larin, Ritbergen, 1997]

$$Z^{\mathrm{RGI}}(a) = \Delta Z^{\overline{\mathrm{MS}}}(\mu) Z^{\overline{\mathrm{MS}}}_{\mathrm{RI'-MOM}}(\mu) Z^{\mathrm{RI'-MOM}}(a,\mu)$$

RGI conversion

Perturbative subtraction

- ullet Lattice artifacts can be sizeable at large μ
- Subtract lattice artifacts at $O(g^2)$ using lattice perturbation theory for

$$Z^{ ext{RI'}- ext{MOM}}(\mu, a) = 1 + g^2 F(\mu, a)$$

= 1 + $g^2 \left[\gamma_0 \log(\mu a) + C + O(\mu^2 a^2) \right]$

Lattice artifacts given by

$$D(\mu, a) = g^{2} [F(\mu, a) - (\gamma_{0} \log(\mu a) + C)]$$

where γ_0 known analytically, and C known analytically (or fittable from $F(\mu, a) - \gamma_0 \log(\mu a)$ as $a \to 0$)

Perturbative subtraction

- Using the HiPPy/HPsrc packages [Hart, Horgan, GvH, 2009] separate the Feynman rules and Feynman diagrams
- Code diagrams once in an operator- and action-independent fashion to calculate for in principle arbitrary operators
- Can also switch gauge (Wilson, Symanzik) and fermion (clover, smeared) actions easily

Perturbative subtraction

- Using the HiPPy/HPsrc packages [Hart, Horgan, GvH, 2009] separate the Feynman rules and Feynman diagrams
- Code diagrams once in an operator- and action-independent fashion to calculate for in principle arbitrary operators
- Can also switch gauge (Wilson, Symanzik) and fermion (clover, smeared) actions easily

Final fits

 Account for matching to three-loop order, and for remaining lattice artifacts by fitting

$$Z^{\rm RGI, sub}(a, \mu) = Z^{\rm RGI}(\beta) \left\{ 1 + d_1 \left[g^{\overline{\rm MS}}(\mu) \right]^8 \right\} + d_2(\beta) (a\mu)^2 \Delta Z^{\overline{\rm MS}}(\mu) Z_{\rm RI'-MOM}^{\overline{\rm MS}}$$

- d_1 is independent of $\beta \leadsto \text{perform a combined fit accross all lattice spacings}$
- Fit window should fulfil $\Lambda^{\overline{\rm MS}} \ll \mu \ll a^{-1}$
- Take $\mu_{\rm min}=3$ GeV, $a\mu_{\rm max}=2.75$ relying on perturbative subtraction of leading artifacts
- Study systematic errors of final result by varying
 - chiral extrapolation (quadratic, including $e^{-m_{\pi}L}$ term),
 - value of $a\Lambda^{\overline{\rm MS}}$,
 - fitting window for final fit.

Nucleon tensor charge

PRELIMINARY

Nucleon tensor charge with AMA

arXiv:1605.00564

Nucleon tensor charge

Excited states? Statistics?

Summary

- Implemented NPR using the RI'-MOM scheme on the CLS $N_{
 m f}=2$ ensembles for local quark bilinears
- Automated perturbative subtraction allows easy adaptation to different operators and actions
- In particular, application to $N_{\rm f}=2+1$ CLS ensembles poses no major difficulties (for periodic boundary conditions)
- Results for nucleon charges (and form factors) forthcoming
- Intend to treat derivative operators for \(\lambda x \rangle \) and related observables in much the same way

The end

Thank you for your attention

Backup Slides

- BACKUP -

Quark field renormalization

