Electromagnetic Form Factors through Parity-Expanded Variational Analysis

Finn M. Stokes

Waseem Kamleh, Derek B. Leinweber and Benjamin J. Owen

Centre for the Subatomic Structure of Matter

• The isolation of excitations of baryons at nonzero momentum is important for the evaluation of baryon form factors and transition moments

- The isolation of excitations of baryons at nonzero momentum is important for the evaluation of baryon form factors and transition moments
- Existing parity projection techniques are vulnerable to opposite parity contaminations at nonzero momentum

- The isolation of excitations of baryons at nonzero momentum is important for the evaluation of baryon form factors and transition moments
- Existing parity projection techniques are vulnerable to opposite parity contaminations at nonzero momentum
- We propose the Parity Expanded Variational Analysis (PEVA) technique to resolve this issue

• Eigenstates of nonzero momentum are not eigenstates of parity

- Eigenstates of nonzero momentum are not eigenstates of parity
- Categorise states by parity in rest frame

- Eigenstates of nonzero momentum are not eigenstates of parity
- Categorise states by parity in rest frame
- Call states that transform positively under parity in their rest frame "positive parity states" (B^+)

- Eigenstates of nonzero momentum are not eigenstates of parity
- Categorise states by parity in rest frame
- Call states that transform positively under parity in their rest frame "positive parity states" (B^+)
- Call states that transform negatively under parity in their rest frame "negative parity states" (B^-)

• Conventional baryon operators $\{\chi^i\}$ couple to states of both parities

$$egin{aligned} &\langle \Omega | \chi^i | B^+
angle = \lambda_i^{B^+} \sqrt{rac{m_{B^+}}{E_{B^+}}} \, u_{B^+}(p,s) \ &\langle \Omega | \chi^i | B^-
angle = \lambda_i^{B^-} \sqrt{rac{m_{B^-}}{E_{B^-}}} \, \gamma_5 \, u_{B^-}(p,s) \end{aligned}$$

• Conventional baryon operators $\{\chi^i\}$ couple to states of both parities

$$egin{aligned} &\langle \Omega | \chi^i | B^+
angle = \lambda_i^{B^+} \sqrt{rac{m_{B^+}}{E_{B^+}}} \, u_{B^+}(p,s) \ &\langle \Omega | \chi^i | B^-
angle = \lambda_i^{B^-} \sqrt{rac{m_{B^-}}{E_{B^-}}} \, \gamma_5 \, u_{B^-}(p,s) \end{aligned}$$

• Conventional baryon operators $\{\chi^i\}$ couple to states of both parities

$$egin{aligned} &\langle \Omega | \chi^i | B^+
angle = \lambda_i^{B^+} \sqrt{rac{m_{B^+}}{E_{B^+}}} \, u_{B^+}(p,s) \ &\langle \Omega | \chi^i | B^-
angle = \lambda_i^{B^-} \sqrt{rac{m_{B^-}}{E_{B^-}}} \, \gamma_5 \, u_{B^-}(p,s) \end{aligned}$$

• Form correlation matrix

$$\mathcal{G}_{ij}(\mathbf{p};\ t):=\sum_{\mathbf{x}}\mathrm{e}^{\mathrm{i}\mathbf{p}\cdot\mathbf{x}}\ \langle \Omega|\chi^{i}(x)\,\overline{\chi}^{j}(0)|\Omega
angle$$

• Introduce $\Gamma_{\pm} = (\gamma_4 \pm \mathbb{I})/2$ and define $G_{ij}(\Gamma_{\pm}; \mathbf{p}; t) := tr(\Gamma_{\pm} \mathcal{G}_{ij}(\mathbf{p}; t))$

- Introduce $\Gamma_{\pm} = (\gamma_4 \pm \mathbb{I})/2$ and define $G_{ij}(\Gamma_{\pm}; \mathbf{p}; t) := tr(\Gamma_{\pm} \mathcal{G}_{ij}(\mathbf{p}; t))$
- At zero momentum, projected correlators only contain terms for states of a single parity

- Introduce $\Gamma_{\pm} = (\gamma_4 \pm \mathbb{I})/2$ and define $G_{ij}(\Gamma_{\pm}; \mathbf{p}; t) := tr(\Gamma_{\pm} \mathcal{G}_{ij}(\mathbf{p}; t))$
- At zero momentum, projected correlators only contain terms for states of a single parity

$$G_{ij}(\Gamma_+;\mathbf{0};\ t) = \sum_{B^+} \mathrm{e}^{-m_{B^+}t}\,\lambda_i^{B^+}\,\overline{\lambda}_j^{B^+}$$

5 / 35

- Introduce $\Gamma_{\pm} = (\gamma_4 \pm \mathbb{I})/2$ and define $G_{ij}(\Gamma_{\pm}; \mathbf{p}; t) := tr(\Gamma_{\pm} \mathcal{G}_{ij}(\mathbf{p}; t))$
- At zero momentum, projected correlators only contain terms for states of a single parity

$$\begin{split} G_{ij}(\Gamma_{+};\mathbf{0};\,t) &= \sum_{B^{+}} e^{-m_{B^{+}}t} \,\lambda_{i}^{B^{+}} \,\overline{\lambda}_{j}^{B^{+}} \\ G_{ij}(\Gamma_{-};\mathbf{0};\,t) &= \sum_{B^{-}} e^{-m_{B^{-}}t} \,\lambda_{i}^{B^{-}} \,\overline{\lambda}_{j}^{B^{-}} \end{split}$$

- Introduce $\Gamma_{\pm} = (\gamma_4 \pm \mathbb{I})/2$ and define $G_{ij}(\Gamma_{\pm}; \mathbf{p}; t) := tr(\Gamma_{\pm} \mathcal{G}_{ij}(\mathbf{p}; t))$
- At zero momentum, projected correlators only contain terms for states of a single parity

$$\begin{split} G_{ij}(\Gamma_+;\mathbf{0};\ t) &= \sum_{B^+} \mathrm{e}^{-m_{B^+}t} \,\lambda_i^{B^+} \,\overline{\lambda}_j^{B^+} \\ G_{ij}(\Gamma_-;\mathbf{0};\ t) &= \sum_{B^-} \mathrm{e}^{-m_{B^-}t} \,\lambda_i^{B^-} \,\overline{\lambda}_j^{B^-} \end{split}$$

• Can analyse states of each parity independently

• $O(|\mathbf{p}|)$ opposite parity contaminations at nonzero momentum

- $O(|\mathbf{p}|)$ opposite parity contaminations at nonzero momentum
- Could remove single opposite parity state with

$$\Gamma_{\pm}(\mathbf{p}) = \frac{1}{2} \left(\frac{m_{B^{\mp}}}{E_{B^{\mp}}(\mathbf{p})} \gamma_4 \pm \mathbb{I} \right)$$

- $O(|\mathbf{p}|)$ opposite parity contaminations at nonzero momentum
- Could remove single opposite parity state with

$$\Gamma_{\pm}(\mathbf{p}) = \frac{1}{2} \left(\frac{m_{B^{\mp}}}{E_{B^{\mp}}(\mathbf{p})} \gamma_4 \pm \mathbb{I} \right)$$

• Better to use variational analysis to remove all contaminating states simultaneously

$$\left(\begin{array}{cc} E_{B^{\pm}}(\mathbf{p}) \pm m_{B^{\pm}} & -\sigma_k p_k \\ \sigma_k p_k & -(E_{B^{\pm}}(\mathbf{p}) \mp m_{B^{\pm}}) \end{array}\right)$$

$$\begin{pmatrix} E_{B\pm}(\mathbf{p}) \pm m_{B\pm} & -\sigma_k p_k \\ \sigma_k p_k & -(E_{B\pm}(\mathbf{p}) \mp m_{B\pm}) \end{pmatrix}$$

$$\left(\begin{array}{cc} E_{B^{\pm}}(\mathbf{p}) \pm m_{B^{\pm}} & -\sigma_k p_k \\ \sigma_k p_k & -\left(E_{B^{\pm}}(\mathbf{p}) \mp m_{B^{\pm}}\right) \end{array}\right)$$

$$\left(\begin{array}{cc} E_{B^{\pm}}(\mathbf{p}) \pm m_{B^{\pm}} & -\sigma_{k} p_{k} \\ \sigma_{k} p_{k} & -(E_{B^{\pm}}(\mathbf{p}) \mp m_{B^{\pm}}) \end{array}\right)$$

• Terms in unprojected correlation matrix have Dirac structure

$$\begin{pmatrix} E_{B^{\pm}}(\mathbf{p}) \pm m_{B^{\pm}} & -\sigma_k p_k \\ \sigma_k p_k & -(E_{B^{\pm}}(\mathbf{p}) \mp m_{B^{\pm}}) \end{pmatrix}$$

Define PEVA projector

$$\Gamma_{\mathbf{p}} = \frac{1}{4} (\mathbb{I} + \gamma_4) (\mathbb{I} - i\gamma_5 \gamma_k \hat{p}_k)$$

Terms in unprojected correlation matrix have Dirac structure

$$\begin{pmatrix}
E_{B^{\pm}}(\mathbf{p}) \pm m_{B^{\pm}} & -\sigma_k p_k \\
\sigma_k p_k & -(E_{B^{\pm}}(\mathbf{p}) \mp m_{B^{\pm}})
\end{pmatrix}$$

Define PEVA projector

$$\Gamma_{\mathbf{p}} = \frac{1}{4} (\mathbb{I} + \gamma_4) (\mathbb{I} - i\gamma_5 \gamma_k \hat{p}_k)$$

• $\chi^i_{\mathbf{p}} := \mathbf{\Gamma}_{\mathbf{p}} \chi^i$ couples to positive parity states at zero momentum

• Terms in unprojected correlation matrix have Dirac structure

$$\begin{pmatrix}
E_{B^{\pm}}(\mathbf{p}) \pm m_{B^{\pm}} & -\sigma_k p_k \\
\sigma_k p_k & -(E_{B^{\pm}}(\mathbf{p}) \mp m_{B^{\pm}})
\end{pmatrix}$$

Define PEVA projector

$$\Gamma_{\mathbf{p}} = \frac{1}{4} (\mathbb{I} + \gamma_4) (\mathbb{I} - i\gamma_5 \gamma_k \hat{p}_k)$$

χⁱ_p := Γ_pχⁱ couples to positive parity states at zero momentum
 χ^{i'}_p := Γ_pγ₅χⁱ couples to negative parity states at zero momentum

• Terms in unprojected correlation matrix have Dirac structure

$$\left(\begin{array}{cc} E_{B^{\pm}}(\mathbf{p}) \pm m_{B^{\pm}} & -\sigma_k p_k \\ \sigma_k p_k & -(E_{B^{\pm}}(\mathbf{p}) \mp m_{B^{\pm}}) \end{array}\right)$$

Define PEVA projector

$$\Gamma_{\mathbf{p}} = \frac{1}{4} (\mathbb{I} + \gamma_4) (\mathbb{I} - i\gamma_5 \gamma_k \hat{p}_k)$$

χⁱ_p := Γ_pχⁱ couples to positive parity states at zero momentum
χ^{i'}_p := Γ_pγ₅χⁱ couples to negative parity states at zero momentum
Both couple to states with consistent Dirac structure Γ_pu_B(p, s)

- Second lightest PACS-CS (2 + 1)-flavour full-QCD ensemble
 - ▶ 32³ × 64 lattices
 - $a = 0.0951(14) \, \text{fm}$ by Sommer parameter
 - $\kappa_{u,d} = 0.1377$, corresponding to $m_{\pi} = 280(5) \,\mathrm{MeV}$

- Second lightest PACS-CS (2 + 1)-flavour full-QCD ensemble
 - ▶ 32³ × 64 lattices
 - $a = 0.0951(14) \, \text{fm}$ by Sommer parameter
 - $\kappa_{u,d} = 0.1377$, corresponding to $m_{\pi} = 280(5) \,\mathrm{MeV}$
- Using conventional spin-1/2 nucleon operators

$$\chi_1 = \epsilon^{abc} \left[u^{a^{\top}}(C\gamma_5) d^b \right] u^c$$

$$\chi_2 = \epsilon^{abc} \left[u^{a^{\top}}(C) d^b \right] \gamma_5 u^c$$

• Apply 16, 35, 100 and 200 sweeps of gauge invariant gaussian smearing in creating the propagators

Eigenvector components Ground state

Effective energy Ground state - $p^2 \simeq 0.166 \,\mathrm{GeV}^2$

Effective energy

Ground state

Eigenvector components First negative parity excitation

Effective energy First negative parity excitation - $p^2 \simeq 0.166 \, {\rm GeV}^2$

13 / 35

Effective energy First negative parity excitation

Eigenvector components Second negative parity excitation

Effective energy Second negative parity excitation

Eigenvector components First positive parity excitation

Effective energy First positive parity excitation

Nucleon spectrum

• Construct three point correlator for a single energy eigenstate

$$\begin{aligned} G_{ij}^{\mu}(\mathbf{p}',\,\mathbf{p};\,\Gamma;\,t_{2},\,t_{1}) &:= \mathrm{tr}\left[\Gamma\sum_{\mathbf{x},\mathbf{y}}\mathrm{e}^{\mathrm{i}\mathbf{p}\cdot\mathbf{x}}\,\mathrm{e}^{\mathrm{i}(\mathbf{p}'-\mathbf{p})\cdot\mathbf{y}}\,\left\langle\Omega|\chi^{i}(x)\,J^{\mu}(y)\,\overline{\chi}^{j}(0)|\Omega\right\rangle\right]\\ G_{\alpha}^{\mu}(\mathbf{p}',\,\mathbf{p};\,\Gamma;\,t_{2},\,t_{1}) &:= v_{i}^{\alpha}(\mathbf{p}')\,G_{ij}^{\mu}(\mathbf{p}',\,\mathbf{p};\,\Gamma;\,t_{2},\,t_{1})\,u_{j}^{\alpha}(\mathbf{p}) \end{aligned}$$

20 / 35

• Construct three point correlator for a single energy eigenstate

$$G_{ij}^{\mu}(\mathbf{p}', \mathbf{p}; \Gamma; t_2, t_1) := \operatorname{tr} \left[\Gamma \sum_{\mathbf{x}, \mathbf{y}} e^{i\mathbf{p}\cdot\mathbf{x}} e^{i(\mathbf{p}'-\mathbf{p})\cdot\mathbf{y}} \langle \Omega | \chi^i(x) J^{\mu}(y) \overline{\chi}^j(0) | \Omega \rangle \right]$$
$$G_{\alpha}^{\mu}(\mathbf{p}', \mathbf{p}; \Gamma; t_2, t_1) := v_i^{\alpha}(\mathbf{p}') G_{ij}^{\mu}(\mathbf{p}', \mathbf{p}; \Gamma; t_2, t_1) u_j^{\alpha}(\mathbf{p})$$

• Define ratio

$$R^{\mu}_{\alpha}(\mathbf{p}',\,\mathbf{p};\,t_1) := \sqrt{\frac{G^{\mu}_{\alpha}(\mathbf{p}',\,\mathbf{p};\,\Gamma;\,t_2,\,t_1)\,G^{\mu}_{\alpha}(\mathbf{p},\,\mathbf{p}';\,\Gamma;\,t_2,\,t_1)}{G_{\alpha}(\mathbf{p}';\,t_2)\,G_{\alpha}(\mathbf{p};\,t_2)}}$$

• Construct three point correlator for a single energy eigenstate

$$\begin{split} G_{ij}^{\mu}(\mathbf{p}',\,\mathbf{p};\,\Gamma;\,t_2,\,t_1) &:= \mathrm{tr}\left[\Gamma\sum_{\mathbf{x},\mathbf{y}} \mathrm{e}^{\mathrm{i}\mathbf{p}\cdot\mathbf{x}}\,\mathrm{e}^{\mathrm{i}(\mathbf{p}'-\mathbf{p})\cdot\mathbf{y}}\,\left\langle\Omega|\chi^i(x)\,J^{\mu}(y)\,\overline{\chi}^j(0)|\Omega\right\rangle\right]\\ G_{\alpha}^{\mu}(\mathbf{p}',\,\mathbf{p};\,\Gamma;\,t_2,\,t_1) &:= v_i^{\alpha}(\mathbf{p}')\,G_{ij}^{\mu}(\mathbf{p}',\,\mathbf{p};\,\Gamma;\,t_2,\,t_1)\,u_j^{\alpha}(\mathbf{p}) \end{split}$$

Define ratio

$$\mathsf{R}^{\mu}_{\alpha}(\mathsf{p}',\,\mathsf{p};\,t_1) := \sqrt{\frac{G^{\mu}_{\alpha}(\mathsf{p}',\,\mathsf{p};\,\mathsf{\Gamma};\,t_2,\,t_1) \ G^{\mu}_{\alpha}(\mathsf{p},\,\mathsf{p}';\,\mathsf{\Gamma};\,t_2,\,t_1)}{G_{\alpha}(\mathsf{p}';\,t_2) \ G_{\alpha}(\mathsf{p};\,t_2)}}$$

• Extract $G_E(Q^2)$ and $G_M(Q^2)$ from ratio

Form Factors Fits to ground state form factors

Finn M. Stokes (CSSM)

Form Factors $G_E(Q^2 = 0.15(1) \, { m GeV}^2)$ for ground state

Form Factors $\mathcal{G}_{M}(Q^{2}=0.15(1)\,\mathrm{GeV}^{2}) \text{ for ground state}$

Finn M. Stokes (CSSM)

Form Factors Fits to G_E for first negative parity excitation

Finn M. Stokes (CSSM)

Form Factors Fits to G_M for first negative parity excitation

Finn M. Stokes (CSSM)

Form Factors $G_M(Q^2 = 0.15(1) \, {\rm GeV}^2)$ for first negative parity excitation

Finn M. Stokes (CSSM)

Form Factors $G_M(Q^2=0.15(1)\,{\rm GeV}^2)$ for second negative parity excitation

Finn M. Stokes (CSSM)

Form Factors $G_M(Q^2=0.15(1)\,{\rm GeV}^2)$ for second negative parity excitation

Finn M. Stokes (CSSM)

Positive Parity Nucelon Spectrum

Form Factors $G_M(Q^2 = 0.15(1) \, {\rm GeV}^2)$ for first positive parity excitation

Finn M. Stokes (CSSM)

• Conventional baryon spectroscopy at nonzero momentum contaminated by opposite parity states

- Conventional baryon spectroscopy at nonzero momentum contaminated by opposite parity states
- The PEVA technique can effectively remove these opposite parity contaminations

- Conventional baryon spectroscopy at nonzero momentum contaminated by opposite parity states
- The PEVA technique can effectively remove these opposite parity contaminations
- Clear effect on two point function for lowest lying negative parity excitation

- Conventional baryon spectroscopy at nonzero momentum contaminated by opposite parity states
- The PEVA technique can effectively remove these opposite parity contaminations
- Clear effect on two point function for lowest lying negative parity excitation
- Has significant effects on three point functions for excited states

- Conventional baryon spectroscopy at nonzero momentum contaminated by opposite parity states
- The PEVA technique can effectively remove these opposite parity contaminations
- Clear effect on two point function for lowest lying negative parity excitation
- Has significant effects on three point functions for excited states
- This is an important step towards making contact with experiment through calculations such as baryon transition moments

"Parity-expanded variational analysis for nonzero momentum" F. M. Stokes, W. Kamleh, D. B. Leinweber, M. S. Mahbub, B. J. Menadue, B. J. Owen Phys. Rev. D **92** (2015) 11, 114506 doi:10.1103/PhysRevD.92.114506 arXiv:1302.4152 (hep-lat).