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Introduction

The isolation of excitations of baryons at nonzero momentum is
important for the evaluation of baryon form factors and transition
moments

Existing parity projection techniques are vulnerable to opposite parity
contaminations at nonzero momentum
We propose the Parity Expanded Variational Analysis (PEVA)
technique to resolve this issue
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Nonzero momentum

Eigenstates of nonzero momentum are not eigenstates of parity

Categorise states by parity in rest frame
Call states that transform positively under parity in their rest frame
“positive parity states” (B+)
Call states that transform negatively under parity in their rest frame
“negative parity states” (B−)
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Conventional analysis

Conventional baryon operators {χi} couple to states of both parities

〈Ω|χi |B+〉 = λB
+

i

√
mB+

EB+
uB+(p, s)

〈Ω|χi |B−〉 = λB
−

i

√
mB−

EB−
γ5 uB−(p, s)

Form correlation matrix

Gij(p; t) :=
∑
x

eip·x 〈Ω|χi (x)χj(0)|Ω〉
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Parity projection

Introduce Γ± = (γ4 ± I)/2 and define Gij(Γ±; p; t) := tr (Γ± Gij(p; t))

At zero momentum, projected correlators only contain terms for states
of a single parity

Gij(Γ+; 0; t) =
∑
B+

e−mB+ t λB
+

i λB
+

j

Gij(Γ−; 0; t) =
∑
B−

e−mB− t λB
−

i λB
−

j

Can analyse states of each parity independently
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Nonzero momentum

O(|p|) opposite parity contaminations at nonzero momentum

Could remove single opposite parity state with

Γ±(p) =
1
2

(
mB∓

EB∓(p)
γ4 ± I

)
Better to use variational analysis to remove all contaminating states
simultaneously
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Parity-Expanded Variational Analysis (PEVA)

Terms in unprojected correlation matrix have Dirac structure(
EB±(p)±mB± − σkpk

σkpk − (EB±(p)∓mB±)

)

Define PEVA projector

Γp =
1
4

(I + γ4)(I− iγ5γk p̂k)

χi
p := Γpχ

i couples to positive parity states at zero momentum

χi ′
p := Γpγ5χ

i couples to negative parity states at zero momentum
Both couple to states with consistent Dirac structure ΓpuB(p, s)
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Lattice results

Second lightest PACS-CS (2 + 1)-flavour full-QCD ensemble
I 323 × 64 lattices
I a = 0.0951(14) fm by Sommer parameter
I κu,d = 0.1377, corresponding to mπ = 280(5) MeV

Using conventional spin-1/2 nucleon operators

χ1 = εabc [ua>(Cγ5) db] uc

χ2 = εabc [ua>(C ) db] γ5 u
c

Apply 16, 35, 100 and 200 sweeps of gauge invariant gaussian
smearing in creating the propagators
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Eigenvector components
Ground state
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Effective energy
Ground state - p2 ' 0.166GeV2
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Eigenvector components
First negative parity excitation
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Effective energy
First negative parity excitation - p2 ' 0.166GeV2
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Effective energy
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Eigenvector components
Second negative parity excitation
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Effective energy
Second negative parity excitation
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Eigenvector components
First positive parity excitation
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Effective energy
First positive parity excitation
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Effective energy
Nucleon spectrum
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Form Factors

Construct three point correlator for a single energy eigenstate

Gµ
ij (p′, p; Γ; t2, t1) := tr

[
Γ
∑
x,y

eip·x ei(p′−p)·y 〈Ω|χi (x) Jµ(y)χj(0)|Ω〉
]

Gµ
α (p′, p; Γ; t2, t1) := vαi (p′)Gµ

ij (p′, p; Γ; t2, t1) uαj (p)

Define ratio

Rµα(p′, p; t1) :=

√
Gµ
α (p′, p; Γ; t2, t1)Gµ

α (p, p′; Γ; t2, t1)

Gα(p′; t2)Gα(p; t2)

Extract GE (Q2) and GM(Q2) from ratio
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Form Factors
Fits to ground state form factors
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Form Factors
GE (Q

2 = 0.15(1)GeV2) for ground state
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Form Factors
GM(Q2 = 0.15(1)GeV2) for ground state
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Form Factors
Fits to GE for first negative parity excitation
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Form Factors
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Form Factors
GE (Q

2 = 0.15(1)GeV2) for second negative parity excitation
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Form Factors
Fits to GM for first negative parity excitation
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Form Factors
GM(Q2 = 0.15(1)GeV2) for first negative parity excitation
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Form Factors
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Form Factors
GM(Q2 = 0.15(1)GeV2) for second negative parity excitation
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Positive Parity Nucelon Spectrum
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Form Factors
GE (Q

2 = 0.15(1)GeV2) for first positive parity excitation
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Form Factors
GM(Q2 = 0.15(1)GeV2) for first positive parity excitation
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Conclusion

Conventional baryon spectroscopy at nonzero momentum
contaminated by opposite parity states

The PEVA technique can effectively remove these opposite parity
contaminations
Clear effect on two point function for lowest lying negative parity
excitation
Has significant effects on three point functions for excited states
This is an important step towards making contact with experiment
through calculations such as baryon transition moments
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More information

“Parity-expanded variational analysis for nonzero momentum”
F. M. Stokes, W. Kamleh, D. B. Leinweber, M. S. Mahbub,
B. J. Menadue, B. J. Owen
Phys. Rev. D 92 (2015) 11, 114506
doi:10.1103/PhysRevD.92.114506
arXiv:1302.4152 (hep-lat).
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