Tuning of hopping parameters in Oktay-Kronfeld action for heavy quarks on the $N_f = 2 + 1 + 1$ MILC HISQ ensemble Jon A. Bailey, Tanmoy Bhattacharya, Rajan Gupta, Yong-Chull Jang, Hwancheol Jeong, Weonjong Lee, Jaehoon Leem, Sungwoo Park, Boram Yoon [LANL/SWME Collaboration]

Introduction

- We determine hopping parameters of the Oktay-Kronfeld (OK) action for charm and bottom quarks.
- We compute the masses of pseudoscalar (vector) mesons $B_s^{(*)}$, $D_s^{(*)}$; the valence light quark is simulated with HISQ action. We also monitor the inconsistency parameter and the hyperfine splitting.
- We discuss about the computational cost for using OK action rather than using the Fermilab action (clover).

Kappa tuning

We determine the κ that yields the physical pseudoscalar B_s for κ_b and D_s for κ_c . Here we used $aM_{D_s} = 1.204(20)$ and $aM_{B_s} = 3.282(30)$. We do the linear interpolation/extrapolation by choosing 2 kappa values. For the bottom region, we also tried a quadratic extrapolation. In the following figures, blue circles are the M_2 measured using specific kappas and the y-error is the statistical error from a jackknife resampling.

Simulation Details

$a(\mathrm{fm})$	$N_s^3 \times N_t$	am_l, am_s, am_c	u_0	N _{conf}	$N_{ m tsrc}$
0.12	$24^3 \times 64$	0.0102, 0.0509, 0.635	0.86372	500	1

• For light valence (strange) HISQ propagator, we use QUDA conjugate gradient (CG) inverter.

source / sink	strange mass (am_0)	ϵ
point	0.0509	-0.0017468

• We use a tadpole improved OK action for heavy valence (charm and bottom) quarks. The propagator is generated by an optimized BiCGStab inverter using CUDA. To tune the kappa, we try 2 and 3 different kappa values for charm and bottom regions, respectively.

source / sink	κ_b	κ_c	
covariant gaussian smearing:	0.042, 0.041,	0 0/0 0 0/8	
$r_0 = 5$, source iters=60	0.039	0.049, 0.040	

• The production is done on the Seoul National University GPU cluster (DAVID) with GTX Titan Black / Titan X.

Meson Correlators & Dispersion Relation

The red square represents a tuned kappa κ where the x-error is the statistical error from a jackknife resampling and the y-error comes from input meson masses. In the table, we present tuned κ values and the second error for κ_b is from the difference between the linear and quadratic extrapolations.

κ_c	0.04853(11)	linear
κ_b	0.0370(12)(2)	linear / quadratic

Inconsistency Parameter

We calculate the inconsistency parameter $I = \frac{2\delta M_{\bar{Q}q} - (\delta M_{\bar{Q}Q} + \delta M_{\bar{q}q})}{2M_{2\bar{Q}q}}$ where $\delta M_X = M_{2X} - M_{1X}, \ (X = \bar{Q}q, \bar{Q}Q)$ for pseudoscalar mesons. The error is estimated by jackknife resampling.

We compute meson correlators: $C(t, \mathbf{p}) = \sum_{\mathbf{x}} e^{i\mathbf{p}\cdot\mathbf{x}} \langle O^{\dagger}(t, \mathbf{x}) O(0, \mathbf{x}) \rangle$ with 11 momenta $a\mathbf{p} = (2\pi/N_L)\mathbf{n}; \mathbf{n}^2 \leq 10$. Here $O(t, \mathbf{x})$ is the meson interpolating operator. Fit function is :

$$f(t) = Ae^{-Et} \left(1 - (-1)^t r e^{-\Delta Et} \right) + Ae^{-E(T-t)} \left(1 - (-1)^t r e^{-\Delta E(T-t)} \right)$$
(1)

with 4 fitting parameters: A ground state energy and amplitude (E, A), an amplitude ratio $(r = A^p/A)$ and energy difference $(\Delta E = E^p - E)$ where the superscript p stands for a staggered parity partner state. We use full covariance matrix without Bayesian prior with fit range $t \in [8, 15]$. For heavy-heavy, there is no staggered parity partners, and we use fit range $t \in [15, 20]$. And then we use the fit function of the ground state energy E from the meson dispersion relation for a small **p**:

$$E(\mathbf{p}) = M_1 + \frac{\mathbf{p}^2}{2M_2} - \frac{(\mathbf{p}^2)^2}{8M_4^3} - \frac{a^3W_4}{6}\sum_{i=1}^3 p_i^4$$
(2)

with 4 fitting parameters: M_1 (rest mass), M_2 (kinetic mass), M_4 and W_4 . We do the full covariance fit with the 11 momenta as a fit range.

Computational Cost of the OK Action

The OK action has 3.8 times more FLOPs than the Clover action. The OK action cannot use the even-odd (EO) preconditioning due to its 2hop terms in the action, and therefore its Dirac matrix inversion requires 2 times larger FLOPs than the preconditioned one (clover). Also, EO preconditioning improves the condition number of the matrix such that a number of CG iterations decrease. Turning on the c_4 term of the OK action makes a number of CG iterations increased roughly by a factor of 2. In summary, the theoretical limit of the cost factor for the OK action is $3.8(\text{FLOPs}) \times 2(\text{EO-FLOPs}) \times 1.5(\text{EO-Cond.}) \times 1.5 \sim 2(c_4) = 17 \sim 18$. In spite of this amount of the additional cost, we can compensate a part of the OK production time using GPUs.

Hyperfine Spliting

We calculate the hyperfine splittings Δ_1 from rest mass and Δ_2 from kinetic mass. In the continuum limit, we have $\Delta_1 = \Delta_2$. Here we present the $a\Delta_1$ and $a\Delta_2$ with rescaled factor 10^{-3} , and the errors are from a jackknife resampling.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			κ	0.049	0.048	0.042	0.041	0.039	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	hoorer light	$a\Delta_1$	85(2)	68(2)	30(2)	26(2)	22(2)		
quarkonia $a\Delta_1$ $72(1)$ $57(1)$ $24(1)$ $22(0)$ $18(0)$ $a\Delta_2$ $85(40)$ $96(45)$ $41(85)$ $19(90)$ $6(113)$ We have unexpectedly large error in the Δ_2 for bottom quark region, and the errors are especially large for quarkonium.	neavy-ngnt		$a\Delta_2$	55(21)	27(25)	-60(70)	-59(78)	-97(98)	
We have unexpectedly large error in the Δ_2 for bottom quark region, and the errors are especially large for quarkonium.	qua	ıarkonia	$a\Delta_1$	72(1)	57(1)	24(1)	22(0)	18(0)	
We have unexpectedly large error in the Δ_2 for bottom quark region, as the errors are especially large for quarkonium.			$a\Delta_2$	85(40)	96(45)	41(85)	19(90)	6(113)	
the errors are especially large for quarkonium.	We have unexpectedly large error in the Δ_2 for bottom quark region, and								

1e-20					
0	10	20	30	40	50
		iteration	IS		
	Clov.	Clov. by OK	OK	OK (GPU)	
time (s)	49	520	977	288	
iterations	638	1386	2470	2416	

Summary and Plan

In this work, we tuned the κ using a a = 0.12 fm HISQ ensemble but somehow the statistics was low to tune the κ . We will increase the statistics by using another source time slices and tune the κ including the other HISQ ensemble with a = 0.09 As a part of the ongoing project, we are also calculating the improved OK action current relevant to $B \to D^* l \nu$ for the calculation of V_{cb} .