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Introduction
• We determine hopping parameters of the Oktay-Kronfeld (OK) action

for charm and bottom quarks.

• We compute the masses of pseudoscalar (vector) mesons B(∗)
s , D(∗)

s ; the
valence light quark is simulated with HISQ action. We also monitor
the inconsistency parameter and the hyperfine splitting.

• We discuss about the computational cost for using OK action rather
than using the Fermilab action (clover).

Simulation Details
• We simulate on the Nf = 2 + 1 + 1 MILC HISQ gauge ensembles:

a(fm) N3
s ×Nt aml, ams, amc u0 Nconf Ntsrc

0.12 243 × 64 0.0102, 0.0509, 0.635 0.86372 500 1

• For light valence (strange) HISQ propagator, we use QUDA conjugate
gradient (CG) inverter.

source / sink strange mass (am0) ε
point 0.0509 -0.0017468

• We use a tadpole improved OK action for heavy valence (charm
and bottom) quarks. The propagator is generated by an optimized
BiCGStab inverter using CUDA. To tune the kappa, we try 2 and 3
different kappa values for charm and bottom regions, respectively.

source / sink κb κc
covariant gaussian smearing:
r0 = 5, source iters=60

0.042, 0.041,
0.039 0.049, 0.048

• The production is done on the Seoul National University GPU cluster
(DAVID) with GTX Titan Black / Titan X.

Meson Correlators & Dispersion Relation
We compute meson correlators: C(t,p) =

∑
x e

ip·x〈O†(t,x)O(0,x)〉 with
11 momenta ap = (2π/NL)n;n2 ≤ 10. Here O(t,x) is the meson interpo-
lating operator. Fit function is :

f(t) = Ae−Et
(
1− (−1)tre−∆Et

)
+Ae−E(T−t)

(
1− (−1)tre−∆E(T−t)

)
(1)

with 4 fitting parameters: A ground state energy and amplitude (E, A), an
amplitude ratio (r = Ap/A) and energy difference (∆E = Ep − E) where
the superscript p stands for a staggered parity partner state. We use full
covariance matrix without Bayesian prior with fit range t ∈ [8, 15]. For
heavy-heavy, there is no staggered parity partners, and we use fit range
t ∈ [15, 20]. And then we use the fit function of the ground state energy E
from the meson dispersion relation for a small p:

E(p) = M1 +
p2

2M2
− (p2)2

8M3
4

− a3W4

6

3∑
i=1

p4
i (2)

with 4 fitting parameters: M1 (rest mass), M2 (kinetic mass), M4 andW4.
We do the full covariance fit with the 11 momenta as a fit range.

Hyperfine Spliting
We calculate the hyperfine splittings ∆1 from rest mass and ∆2 from ki-
netic mass. In the continuum limit, we have ∆1 = ∆2. Here we present
the a∆1 and a∆2 with rescaled factor 10−3, and the errors are from a
jackknife resampling.

κ 0.049 0.048 0.042 0.041 0.039

heavy-light a∆1 85(2) 68(2) 30(2) 26(2) 22(2)
a∆2 55(21) 27(25) -60(70) -59(78) -97(98)

quarkonia a∆1 72(1) 57(1) 24(1) 22(0) 18(0)
a∆2 85(40) 96(45) 41(85) 19(90) 6(113)

We have unexpectedly large error in the ∆2 for bottom quark region, and
the errors are especially large for quarkonium.

Kappa tuning
We determine the κ that yields the physical pseudoscalar Bs for κb and
Ds for κc. Here we used aMDs = 1.204(20) and aMBs = 3.282(30). We do
the linear interpolation/extrapolation by choosing 2 kappa values. For the
bottom region, we also tried a quadratic extrapolation. In the following
figures, blue circles are the M2 measured using specific kappas and the
y-error is the statistical error from a jackknife resampling.
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The red square represents a tuned kappa κ where the x-error is the statis-
tical error from a jackknife resampling and the y-error comes from input
meson masses. In the table, we present tuned κ values and the second
error for κb is from the difference between the linear and quadratic extrap-
olations.

κc 0.04853(11) linear
κb 0.0370(12)(2) linear / quadratic

Inconsistency Parameter
We calculate the inconsistency parameter I =

2δMQ̄q−(δMQ̄Q+δMq̄q)

2M2Q̄q
where

δMX = M2X −M1X , (X = Q̄q, Q̄Q) for pseudoscalar mesons. The error
is estimated by jackknife resampling.
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Computational Cost of the OK Action
The OK action has 3.8 times more FLOPs than the Clover action. The
OK action cannot use the even-odd (EO) preconditioning due to its 2-
hop terms in the action, and therefore its Dirac matrix inversion requires
2 times larger FLOPs than the preconditioned one (clover). Also, EO
preconditioning improves the condition number of the matrix such that
a number of CG iterations decrease. Turning on the c4 term of the OK
action makes a number of CG iterations increased roughly by a factor of
2. In summary, the theoretical limit of the cost factor for the OK action is
3.8(FLOPs)×2(EO-FLOPs)×1.5(EO-Cond.)×1.5∼2(c4)=17∼18. In spite
of this amount of the additional cost, we can compensate a part of the OK
production time using GPUs.
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Clover (κ=0.083)
Clover by OK (κ=0.083)

OK (κ=0.041)

Clov. Clov. by OK OK OK (GPU)
time (s) 49 520 977 288
iterations 638 1386 2470 2416

Summary and Plan
In this work, we tuned the κ using a a = 0.12fm HISQ ensemble but
somehow the statistics was low to tune the κ. We will increase the statistics
by using another source time slices and tune the κ including the other
HISQ ensemble with a = 0.09 As a part of the ongoing project, we are also
calculating the improved OK action current relevant to B → D∗lν for the
calculation of Vcb.


