The coupled channel approach to the ΛcN - ΣcN system in lattice QCD

Takaya Miyamoto

(Yukawa Institute for Theoretical Physics, Kyoto University) for HAL QCD Collaboration

Hadron to Atomic Nuclei	S. Aoki, K. Sasaki, D. Kawai	(YITP Kyoto Univ.)
	T. Doi, T. Hatsuda	(RIKEN Nishina)
	T. Inoue	(Nihon Univ.)
	N. Ishii, Y. Ikeda, K. Murano	(RCNP Osaka Univ.)
	H. Nemura	(Univ. Tsukuba)
	T. Iritani	(Stony Brook Univ.)
	S. Gongyo	(Univ. of Tours)
from Lattice QCD	F. Etminan	(Univ. of Birjand)

Introduction

2-baryon bound state — **Di-baryon**

Deuteron is known di-baryon so far.

Are there any other di-baryons?

- 2-baryon system including heavy quarks has more chance to have bound state.
 - Small kinetic energies are expected.
 - Small repulsive core are expected within the CMI ($\sim 1/m_Q$).

Introduction

The pion exchange contribution is important to form **deuteron**.

NN (J^P=1+)

$$\Sigma cN (J^{P}=1^{+})$$

Since the pion exchange is allowed in ΣcN (J^P=1+) channel, the bound state may form. Y. R. Liu, M. Oka, Phys. Rev. D85, 014015 (2012).

No experimental data for ΣcN scattering.

We extract the baryon interaction using HAL QCD method

Outline

- Introduction
- · HAL QCD method
- Lattice simulation setup
- Numerical results
- Summary & Conclusion

S. Aoki, T. Hatsuda, N. Ishii,

Prog. Theor. Phys., 123 (2010).

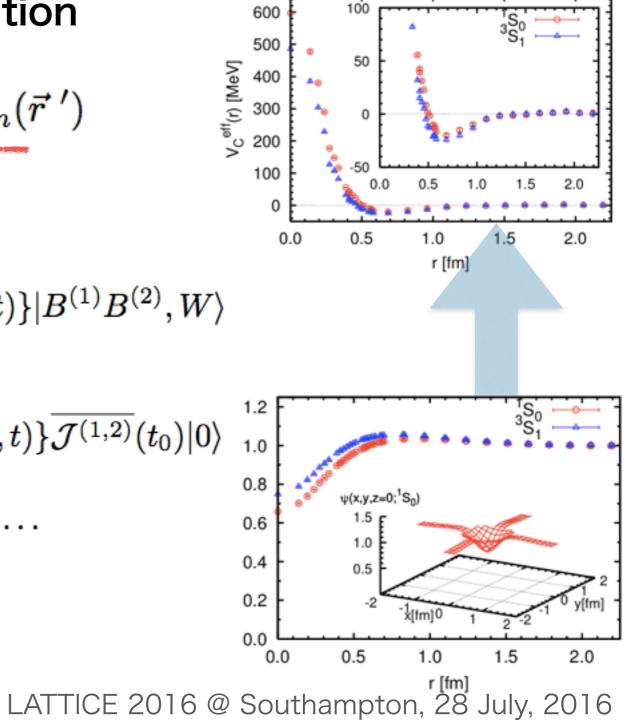
Define the **energy-independent non-local potential** through the **Schrödinger-type equation**

$$(E_n - H_0) \, \psi_n(\vec{r}) = \int d^3r' U(\vec{r}, \vec{r}\,') \psi_n(\vec{r}\,')$$

from NBS wave function

 $\psi_{\alpha\beta}^{(W)}(\vec{r})e^{-Wt} = \sum_{\vec{x}} \langle 0|T\{B_{\alpha}^{(1)}(\vec{r}+\vec{x},t)B_{\beta}^{(2)}(\vec{x},t)\}|B^{(1)}B^{(2)},W\rangle$

$$\begin{aligned} G_{\alpha\beta}(\vec{r}, t-t_0) &= \sum_{\vec{x}} \langle 0 | T\{B_{\alpha}^{(1)}(\vec{r}+\vec{x}, t)B_{\beta}^{(2)}(\vec{x}, t)\} \overline{\mathcal{J}^{(1,2)}}(t_0) | 0 \rangle \\ &= \sum_{n} A_n \psi_{\alpha\beta}^{(W_n)}(\vec{r}) e^{-W_n(t-t_0)} + \cdots \\ \overset{t \to \infty}{\to} A_0 \psi_{\alpha\beta}^{(W_0)}(\vec{r}) e^{-W_0(t-t_0)} \end{aligned}$$



5

S. Aoki, T. Hatsuda, N. Ishii,

Prog. Theor. Phys., 123 (2010).

Since the ΛcN is lowest state of this I = 1/2 (J^P=1+) channel, we have to solve the coupled channel Schrödinger equation to extract the ΣcN interaction.

$$\begin{pmatrix} E_n^{(1)} - H_0^{(1)} \end{pmatrix} \psi_n^{(1)}(\vec{r}) = \int d^3 r' U_{11}(\vec{r}, \vec{r}\,\,') \psi_n^{(1)}(\vec{r}\,\,') + \int d^3 r' U_{12}(\vec{r}, \vec{r}\,\,') \psi_n^{(2)}(\vec{r}\,\,') \\ \left(E_n^{(2)} - H_0^{(2)} \right) \psi_n^{(2)}(\vec{r}) = \int d^3 r' U_{21}(\vec{r}, \vec{r}\,\,') \psi_n^{(1)}(\vec{r}\,\,') + \int d^3 r' U_{22}(\vec{r}, \vec{r}\,\,') \psi_n^{(2)}(\vec{r}\,\,')$$

ΣcN ΛcN

In the low energy state, LO term of the potential is significant. + Velocity expansion

$$\begin{split} U(\vec{r}, \vec{r'}) &= V(\vec{r}, \vec{v}) \delta^3(\vec{r} - \vec{r'}) \\ V(\vec{r}, \vec{v}) &= V_0(r) + V_\sigma(r) \vec{\sigma_1} \cdot \vec{\sigma_2} + V_T(r) S_{12} + V_{LS}(r) \vec{L} \cdot \vec{S} + \mathcal{O}(v^2) \\ & \mathsf{LO} \\ \end{split}$$

S. Aoki, T. Hatsuda, N. Ishii,

Prog. Theor. Phys., 123 (2010).

We use Time-dependent HAL QCD method

to construct the potential using all elastic states.

N. Ishii et al [HAL QCD Coll.], PLB712 (2012) 437.

$$(E_{n} - H_{0}) \psi_{n}(\vec{r}) = \int d^{3}r' U(\vec{r}, \vec{r}') \psi_{n}(\vec{r}')$$

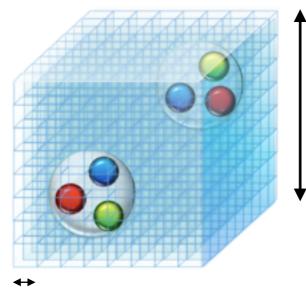
at $m_{B^{(1)}} \neq m_{B^{(2)}}$ $E_n = (\Delta W) + \frac{1}{8\mu} (\Delta W)^2 [1 + \delta^2] + \mathcal{O} ((\Delta W)^3)$ $\delta \equiv \frac{m_{B^{(1)}} - m_{B^{(2)}}}{m_{B^{(1)}} + m_{B^{(2)}}}$ At the difference mass system, we take the approximation up to $(\Delta W)^3$

$$\left(-\frac{\partial}{\partial t} + \left[\frac{1+\delta^2}{8\mu}\right]\frac{\partial^2}{\partial t^2} - H_0\right)R(\vec{r},t) = \int d^3r' U(\vec{r},\vec{r}\,')R(\vec{r}\,',t)$$

 $R_{\alpha\beta}(\vec{r},t) = \frac{G_{\alpha\beta}(\vec{r},t)}{e^{-(m_{B^{(1)}}+m_{B^{(2)}})t}} \qquad \Delta W \equiv \sqrt{k_n^2 + m_{B^{(1)}}^2} + \sqrt{k_n^2 + m_{B^{(2)}}^2} - (m_{B^{(1)}} + m_{B^{(2)}})$ $= \sum_n A_n \psi_{\alpha\beta}(\vec{r},t) e^{-\Delta W_n t} + \cdots \qquad 7 \qquad \text{LATTICE 2016 @ Southampton, 28 July, 2016}$

Lattice QCD setup

Nf=2+1 full QCD configurations generated by the PACS-CS Coll.



0.0907 fm

PACS-CS Collaboration:

S. Aoki, et al., Phys. Rev. D79 (2009) 034503

- Iwasaki gauge action
- O(a) improved Wilson-clover quark action
- a ~ 0.09 fm, L ~ 3 fm ($32^3 \times 64$)

 $m_{\pi} = 700, 570, 410 \text{ MeV}$

For charm quark, we use

Relativistic Heavy Quark (RHQ) action

to reduce the leading O((ma)^n) discretization error. Same parameters set as in Namekawa, et al. is employed.

2.9 fm

Each hadron masses we calculated (MeV).

	Same and	
G/Q @ KE		

Namekawa, et al.,

Phys. Rev. D84 (2011) 074505

π	700	570	410
Ν	1578(6)	1392(6)	1221(10)
٨c	2689(4)	2552(6)	2434(6)
Σc	2783(6)	2674(9)	2568(10)

8

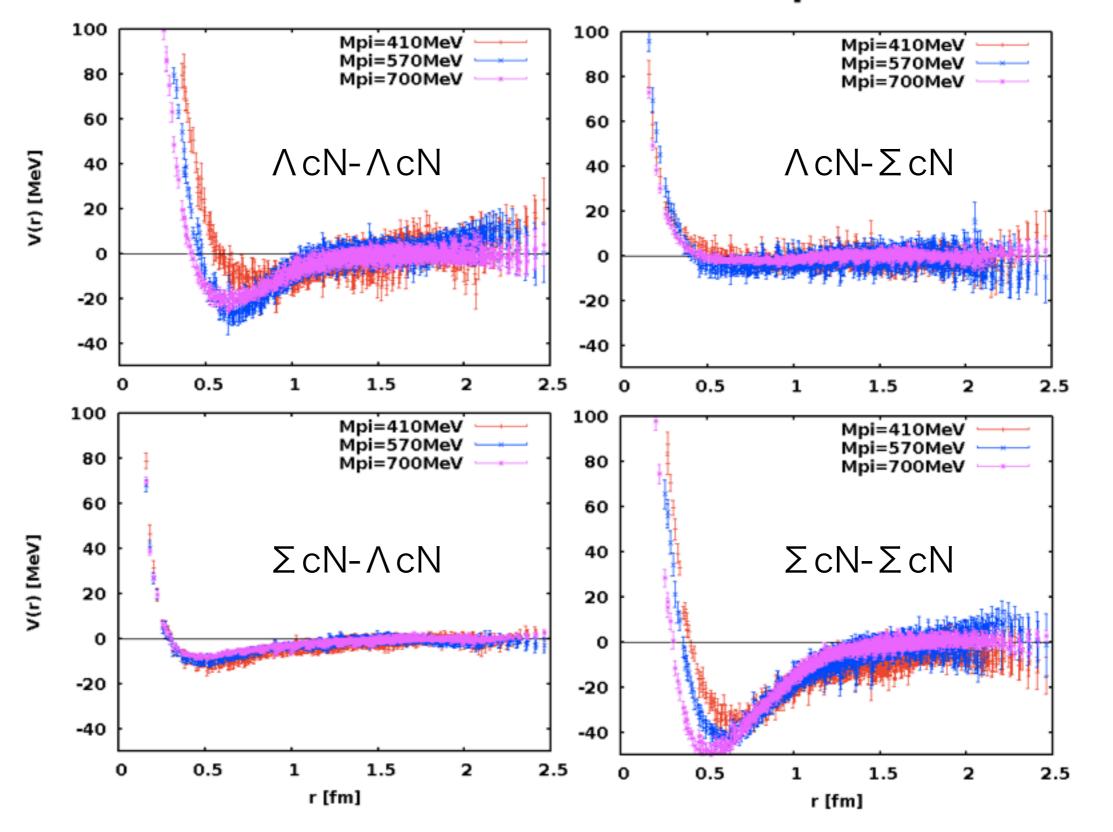
Numerical Results

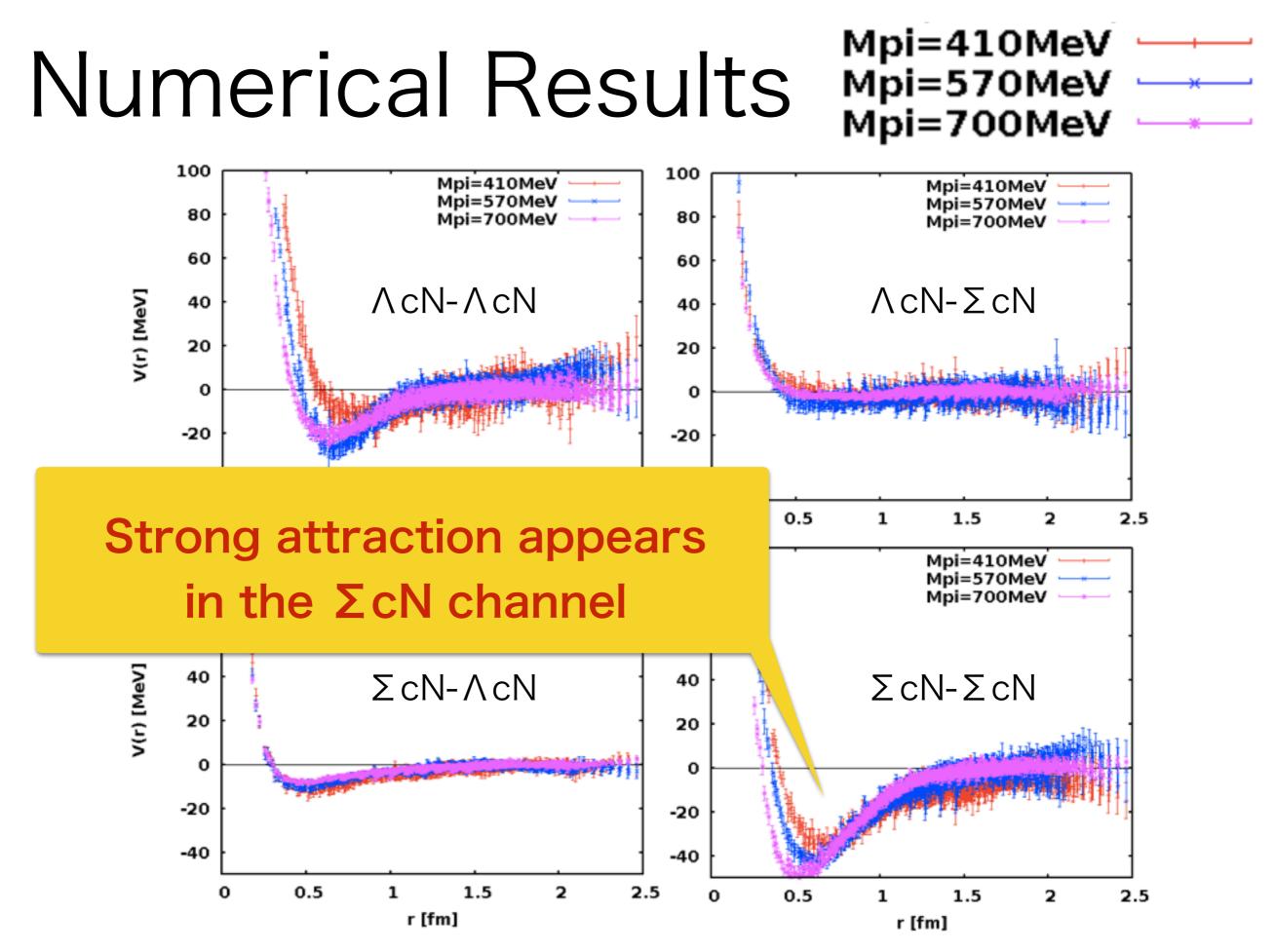
 $\Lambda cN-\Sigma cN Coupled channel effective J^P=1^+ potential$

$$\begin{pmatrix} E_n^{(1)} - H_0^{(1)} \end{pmatrix} \psi_n^{(1)}(\vec{r}) = V_{11}^{eff}(\vec{r})\psi_n^{(1)}(\vec{r}) + V_{12}^{eff}(\vec{r})\psi_n^{(2)}(\vec{r}) \begin{pmatrix} E_n^{(2)} - H_0^{(2)} \end{pmatrix} \psi_n^{(2)}(\vec{r}) = V_{21}^{eff}(\vec{r})\psi_n^{(1)}(\vec{r}) + V_{22}^{eff}(\vec{r})\psi_n^{(2)}(\vec{r})$$

 $\psi^{(1)} \equiv \Lambda cN$ $\psi^{(2)} \equiv \Sigma cN$

Numerical Results Mpi=410MeV Mpi=570MeV Mpi=700MeV



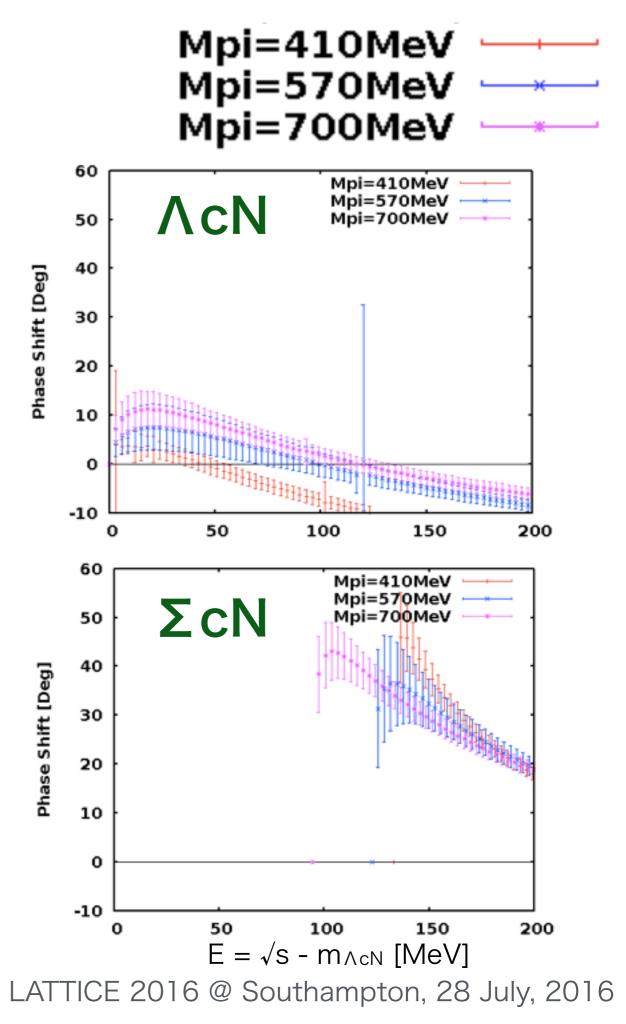


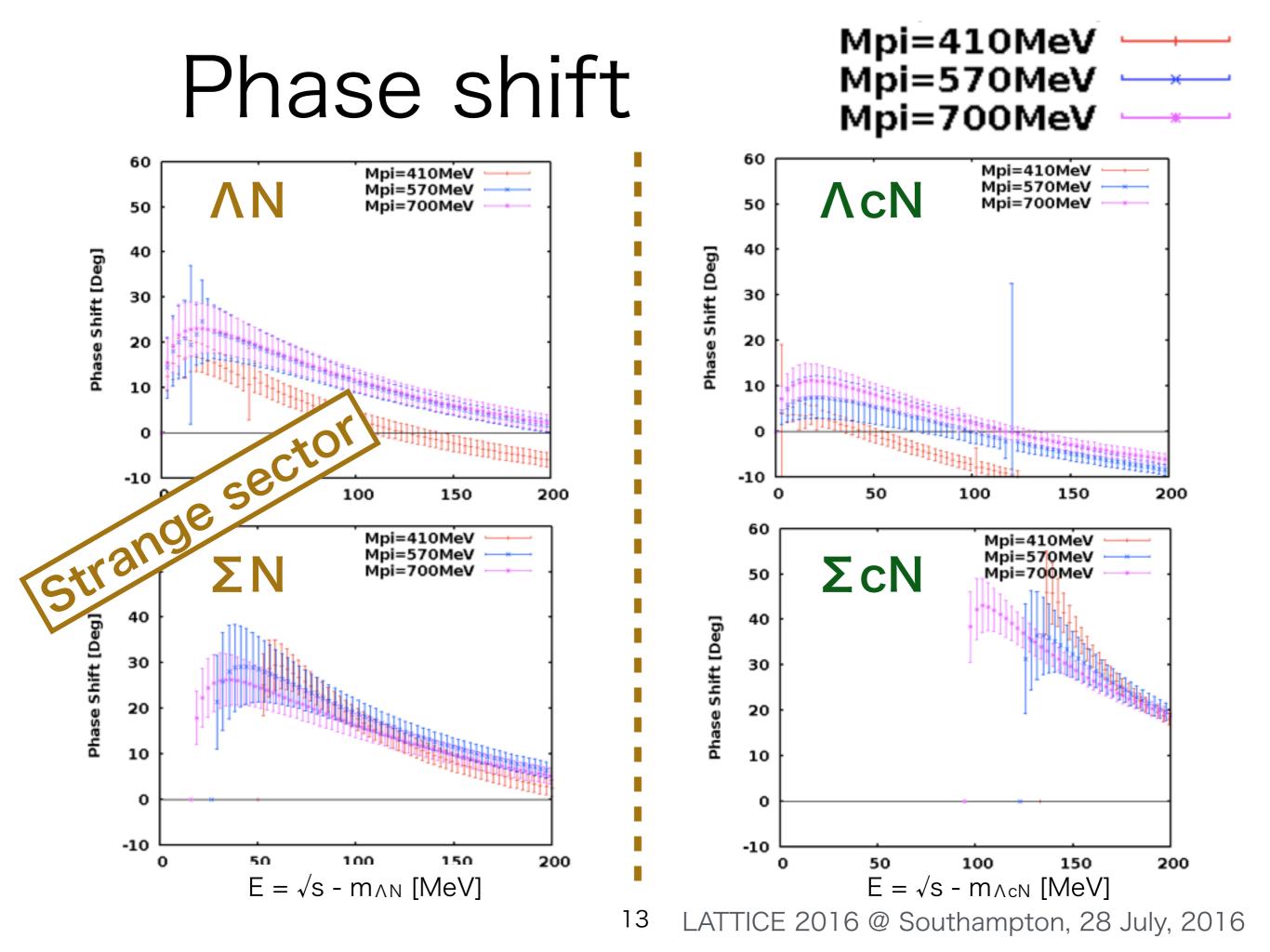
Phase shift

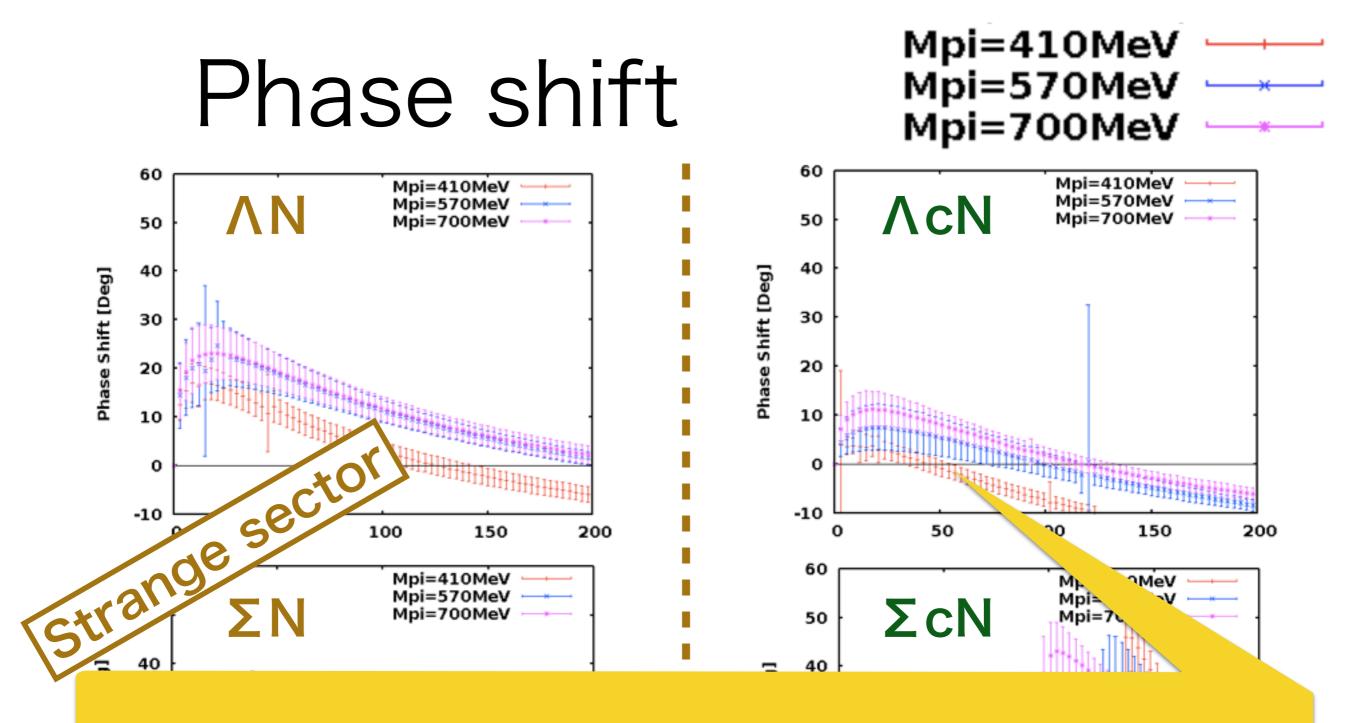
In order to calculate the phase shift, we solve the 2x2 coupled channel Schrödinger equation with HAL QCD potential.

- Phase shift shows strong attraction in ΣcN channel.
- Quark mass dependence is not so strong.

12



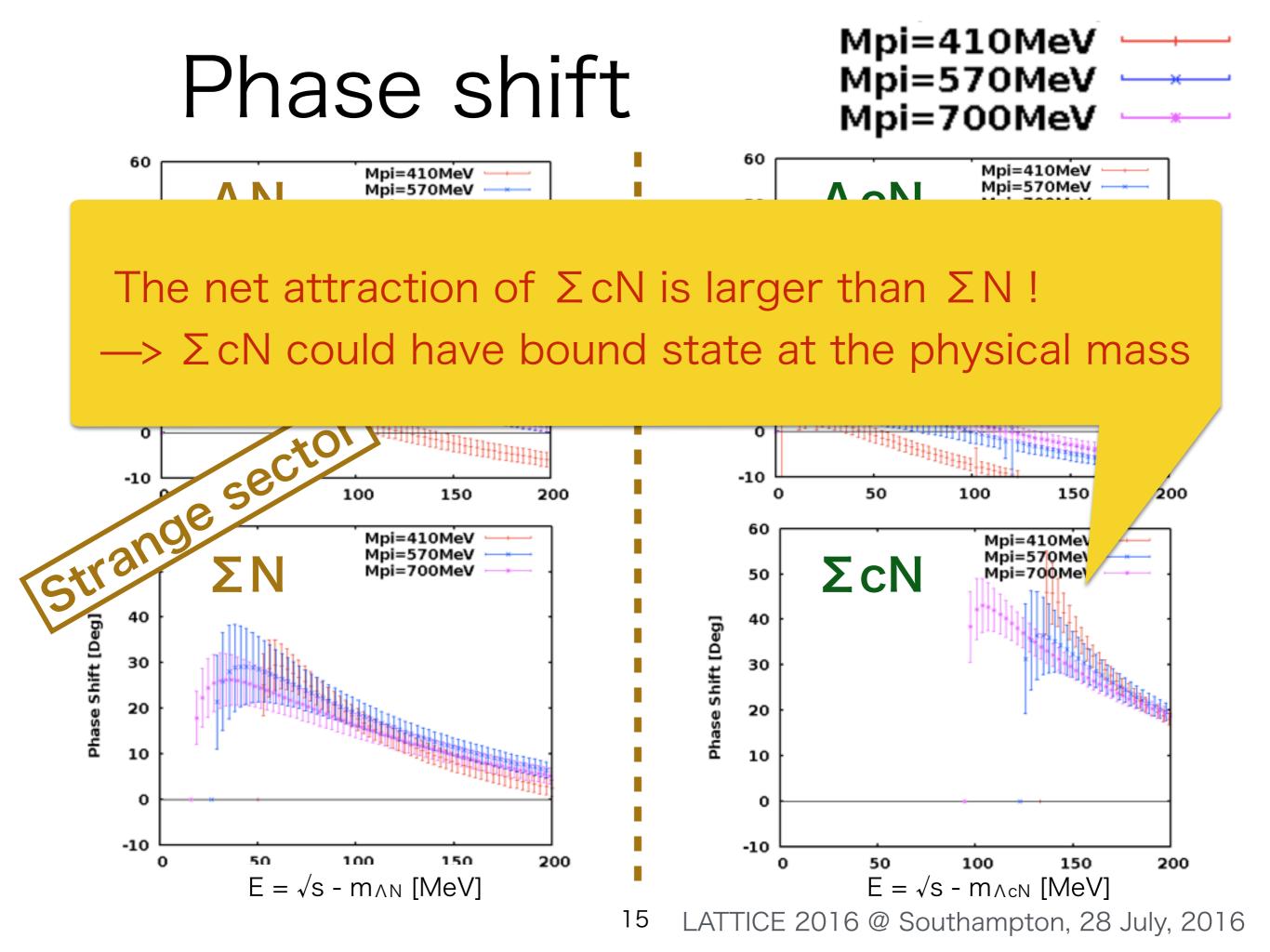




ΛcN cannot exchange the pion. Weak attraction of ΛcN may be caused by the D meson.

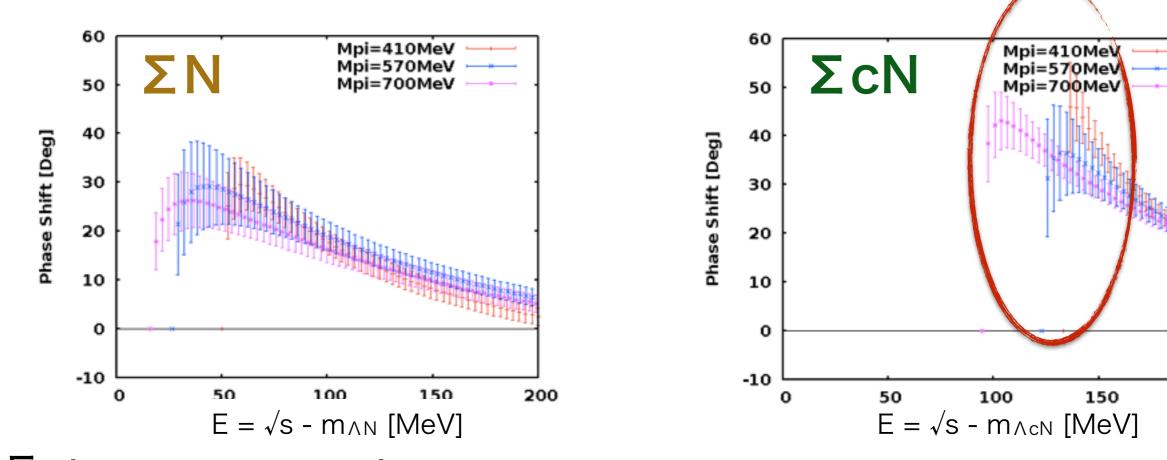
0
 50
 100
 150
 200
 0
 50
 100
 150
 200

$$E = \sqrt{s} - m_{\Lambda N}$$
 [MeV]
 $E = \sqrt{s} - m_{\Lambda cN}$ [MeV]
 $E = \sqrt{s} - m_{\Lambda cN}$ [MeV]
 14
 LATTICE 2016 @ Southampton, 28 July, 2016



Summary & conclusion

- We investigate ΣcN interaction by the HAL QCD method extended to the coupled channel potential.
- Σ cN phase shift indicates the strong attractive but there is no bound state at least m_{π} > 410MeV.



Future prospects

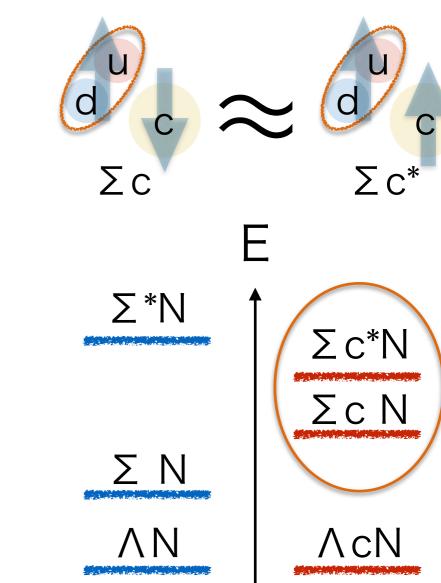
Calculation at physical mass.

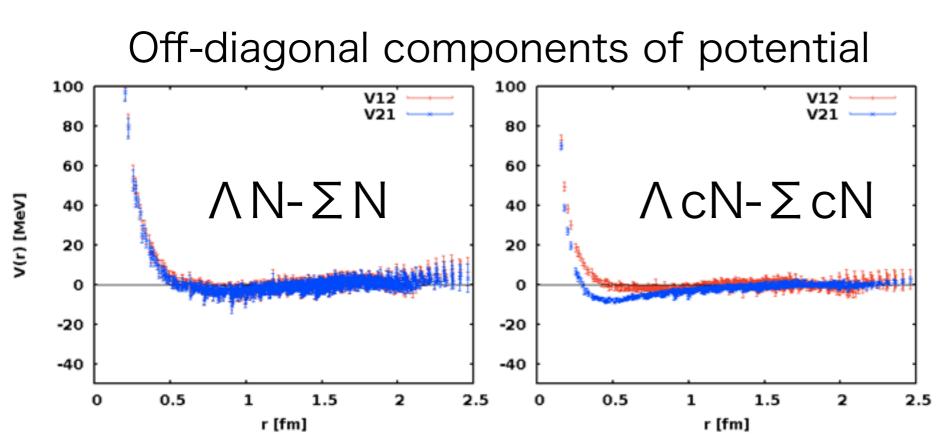
200

Heavy quark spin symmetry

The spin flip amplitude of heavy quark **is suppressed**.

The mass splitting between $\Sigma cN-\Sigma c^*N$ become smaller.





 Λ cN- Σ cN off-diagonal component is non-hermite due to small mass splitting between Σ c- Σ c*

Summary & conclusion

- We investigate ΣcN interaction by the HAL QCD method extended to the coupled channel potential.
- Σ cN phase shift indicates the strong attraction although no bound state is found (at least m $_{\pi}$ > 410MeV).

Future prospects

- Calculation at physical mass.
- Calculation of the $\Lambda cN-\Sigma cN-\Sigma c^*N$ 3x3 coupled channel potential to investigate the effect of $\Sigma cN-\Sigma c^*N$ transition.

Backup

Introduction

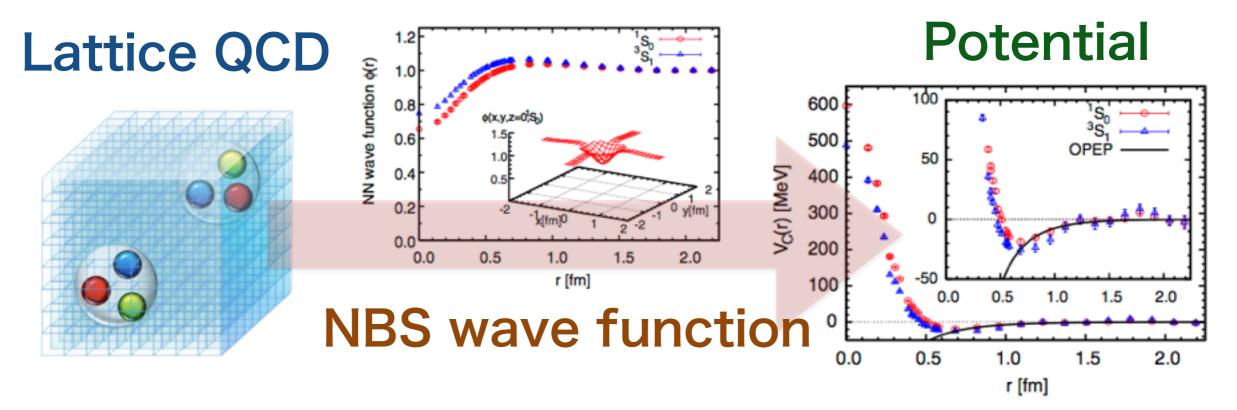
 It is difficult to get experimental data for heavy baryons, but easy to calculate on the lattice.

Lattice data can became prediction.

To extract the baryon interaction, we use **HAL QCD method**

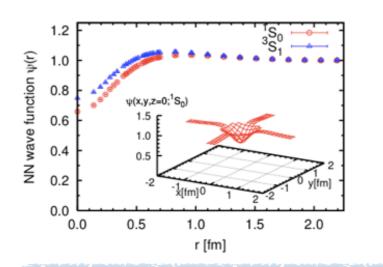
Hadron force from lattice QCD

N. Ishii, S. Aoki, T. Hatsuda, Phys.Rev.Lett. 99, 022001 (2007)



- Octet Baryon Interactions
- Decaplet Baryon Interactions
- N $-\Omega$, $\Omega-\Omega$ Interactions
- Meson Interactions, Meson-Baryon Interactions
- Three-body forces
- Charmed Baryon Interactions <- This work !

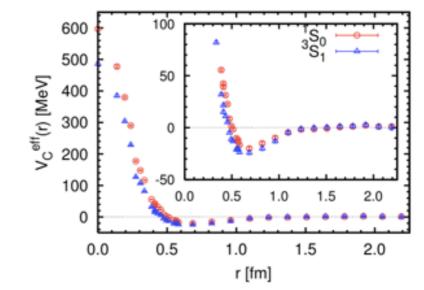
S. Aoki, T. Hatsuda, N. Ishii, Prog. Theor. Phys., 123 (2010).



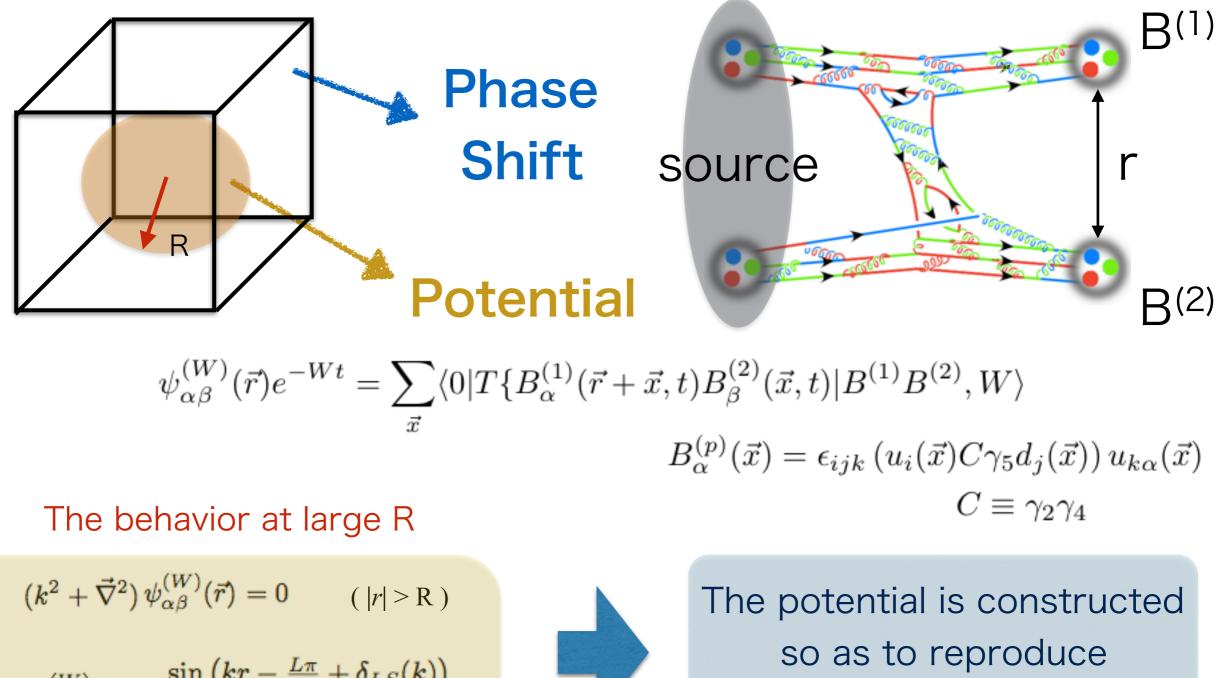
Nambu-Bethe-Salpeter (NBS) wave function $\psi_{\alpha\beta}^{(W)}(\vec{r})e^{-Wt} = \sum_{\vec{x}} \langle 0|T\{B_{\alpha}^{(1)}(\vec{r}+\vec{x},t)B_{\beta}^{(2)}(\vec{x},t)|B^{(1)}B^{(2)},W\rangle$ $(k^{2} + \vec{\nabla}^{2})\psi_{\alpha\beta}^{(W)}(\vec{r}) = 0 \quad (|r| > R) \quad \text{same behavior with}$ $\psi_{\alpha\beta}^{(W)}(\vec{r}) \propto \frac{\sin\left(kr - \frac{L\pi}{2} + \delta_{LS}(k)\right)}{kr} \quad \text{at large r.}$

Hadron 4pt function on the Lattice $G_{\alpha\beta}(\vec{r},t-t_0) = \sum_{\vec{x}} \langle 0|T\{B_{\alpha}^{(1)}(\vec{r}+\vec{x},t)B_{\beta}^{(2)}(\vec{x},t)\overline{\mathcal{J}^{(1,2)}}(t_0)|0\rangle$ Extract NBS wave function from Hadron 4pt function. $= \sum_{n} A_n \psi_{\alpha\beta}^{(W_n)}(\vec{r}) e^{-W_n(t-t_0)} + \cdots \xrightarrow{t \to \infty} A_0 \psi_{\alpha\beta}^{(W_0)}(\vec{r}) e^{-W_0(t-t_0)}$

Using NBS wave function, define Energy-independent non-local potential $(E_n - H_0)\psi_n(\vec{r}) = \int U(\vec{r}, \vec{r'})\psi_n(\vec{r'})d^3r'$ $U(\vec{r}, \vec{r'}) = V(\vec{r}, \vec{v})\delta^3(\vec{r} - \vec{r'})$ Velocity expansion $V(\vec{r}, \vec{v}) = V_0(r) + V_\sigma(r)\sigma_1 \cdot \sigma_2 + V_T(r)S_{12} + V_{LS}(r)\vec{L}\cdot\vec{S} + O(v^2)$ LO NLO



HAL QCD method S. Aoki, T. Hatsuda, N. Ishii, Prog. Theor. Phys., 123 (2010).



23

 $\psi^{(W)}_{lphaeta}(ec{r}) \propto rac{\sin\left(kr - rac{L\pi}{2} + \delta_{LS}(k)
ight)}{kr}$

so as to reproduce the QM phase shift.

is the same with **QM wave function**

S. Aoki, T. Hatsuda, N. Ishii,

Prog. Theor. Phys., 123 (2010).

When we extract the NBS wave function from the hadron-4pt correlation function, we use **Time-dependent HAL QCD method**. N. Ishii et al [HAL QCD Coll.], PLB712 (2012) 437.

$$\begin{aligned} R_{\alpha\beta}(\vec{r},t) &= \frac{G_{\alpha\beta}(\vec{r},t)}{e^{-(m_B(1)+m_B(2))t}} & \Delta W \equiv \sqrt{k_n^2 + m_{B(1)}^2} + \sqrt{k_n^2 + m_{B(2)}^2} - (m_{B(1)} + m_{B(2)}) \\ &= \sum_n A_n \psi_{\alpha\beta}(\vec{r},t) e^{-\Delta W_n t} + \cdots & (E_n - H_0) \ \psi_n(\vec{r}) = \int d^3 r' U(\vec{r},\vec{r}\ ') \psi_n(\vec{r}\ ') \\ &\text{at} \quad m_{B^{(1)}} = m_{B^{(2)}} \equiv m \\ E_n &= (\Delta W) + \frac{1}{4m} (\Delta W)^2 & \text{Construct the potential} \\ &\text{using all elastic states.} \\ &\left(-\frac{\partial}{\partial t} + \frac{1}{4m} \frac{\partial^2}{\partial t^2} - H_0 \right) R(\vec{r},t) = \int d^3 r' U(\vec{r},\vec{r}\ ') R(\vec{r}\ ',t) \end{aligned}$$

The ground state saturation is not necessary.

Energy independent, non-local potential

$$\left(E_n - H_0\right)\psi_n(\vec{r}) = \int U(\vec{r}, \vec{r}')\psi_n(\vec{r}')d^3r'$$

Below the threshold of inelastic scattering, (The energy of threshold is defined by En_c)

$$\int U(\vec{r}, \vec{r'}) \psi_n(\vec{r'}) d^3 r'$$

$$= \int \left[\sum_{n'n''}^{n_c} K_{n'}(\vec{r}) \mathcal{N}_{n'n''}^{-1} \psi_{n''}^*(\vec{r'}) \right] \psi_n(\vec{r'}) d^3 r'$$

$$= \sum_{n'n''}^{n_c} K_{n'}(\vec{r}) \mathcal{N}_{n'n''}^{-1} \int \psi_{n''}^*(\vec{r'}) \psi_n(\vec{r'}) d^3 r'$$

$$= \sum_{n'n''}^{n_c} K_{n'}(\vec{r}) \mathcal{N}_{n'n''}^{-1} \mathcal{N}_{n''n}$$

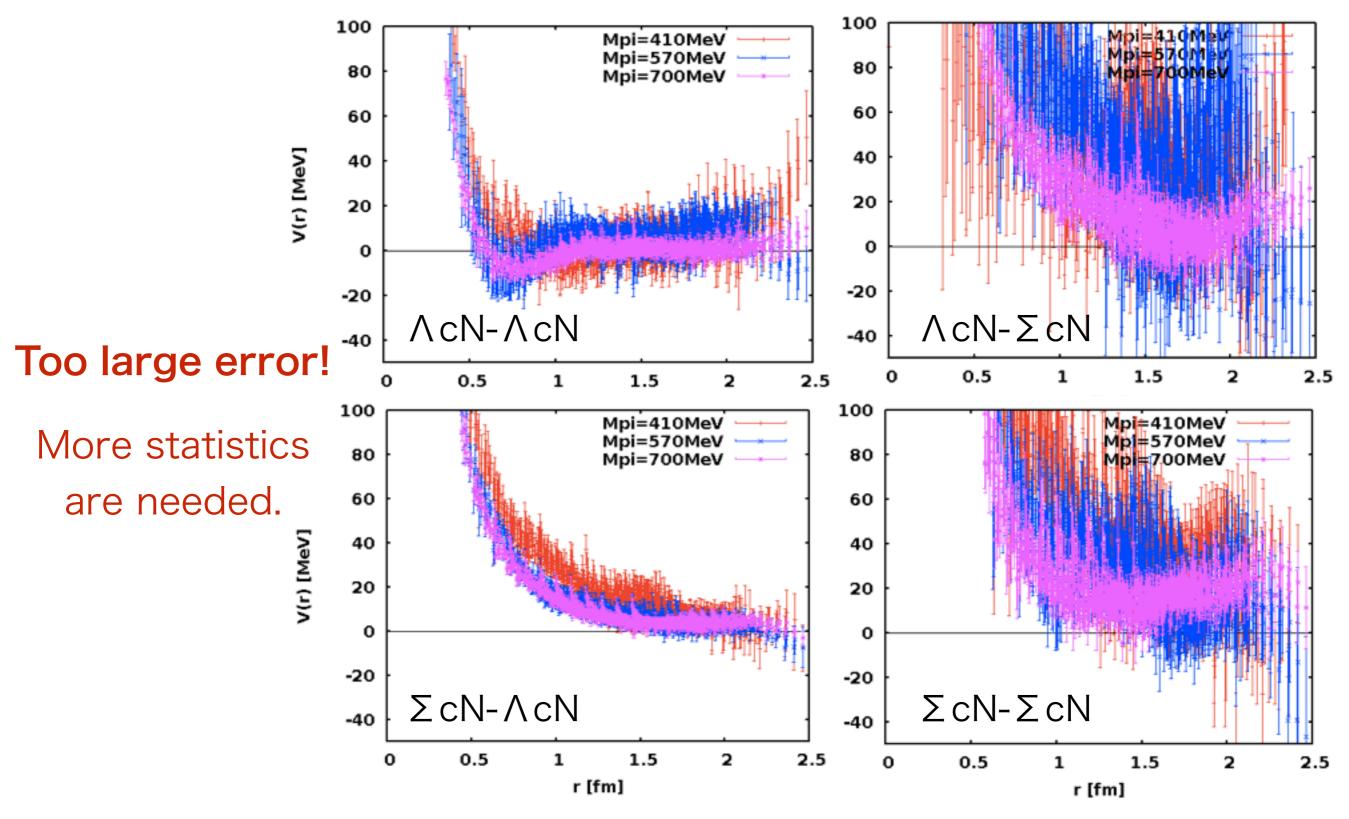
$$= \sum_{n'}^{n_c} K_{n'}(\vec{r}) \delta_{n'n}$$

$$= K_n(\vec{r}) = (E_n - H_0) \psi_n(\vec{r})$$

$$U(ec{r},ec{r'}) = \sum_{nn'}^{n_c} K_n(ec{r}) \mathcal{N}_{nn'}^{-1} \psi_{n'}^*(ec{r'})$$

$$\begin{pmatrix} K_n(\vec{r}) = (E_n - H_0)\psi_n(\vec{r}) \\ \\ N_{nn'} = \int \psi_n^*(\vec{r})\psi_{n'}(\vec{r})d^3r \end{pmatrix}$$

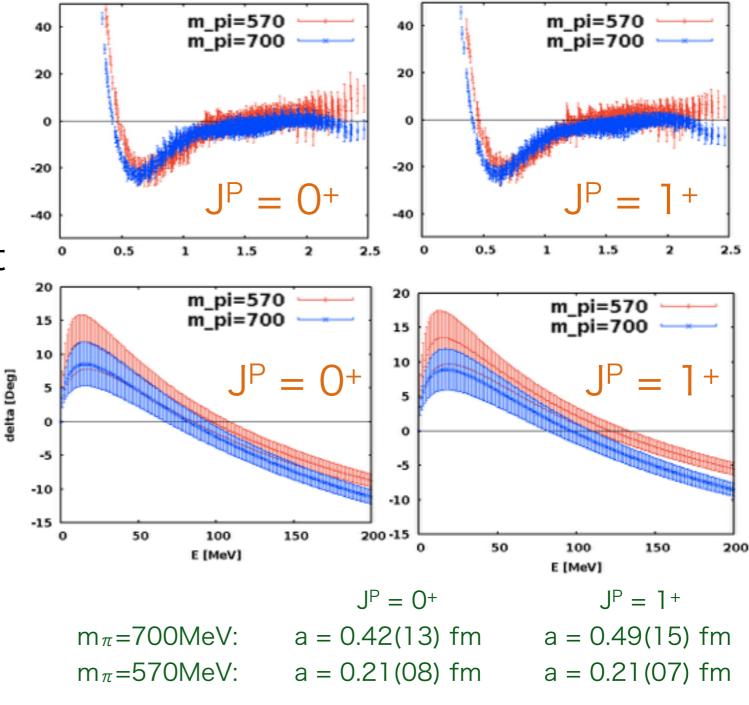
Results $J^{P} = O^{+}$ case



AcN channel

- \cdot ΛcN single channel
- Short range repulsive core
- Mid range attractive pocket
- No bound state at least $m_{\pi} > 570$ MeV.

The pion exchange ΛcN channel : absent ΣcN channel : present



[T.M, for HAL QCD Collaboration]

ΣcN channel could be more attractive.