Calculation of Quark Condensates and Chirality using Improved Staggered Fermions

Hwancheol Jeong, Chulwoo Jung, Wonkyeong Kim, Weonjong Lee

Introduction

- We study quark condensates using improved staggered fermions.
- We search zero modes of the Dirac operator to subtract out their contributions from the quark condensate, in which they give simple poles in the chiral limit.
- We also identify the quantum numbers of those zero modes using spectral flow method in the staggered fermion formalism.

Quark Condensate for Staggered Fermions

- quark condensate :

$$
\begin{equation*}
\langle\bar{\psi} \psi\rangle=-\frac{1}{V N_{t}}\left\langle\operatorname{Tr} \frac{1}{D_{s}+m}\right\rangle_{U} \tag{1}
\end{equation*}
$$

- D_{s} : staggered Dirac operator, m : quark mass
- V : lattice volume, N_{t} : number of tastes, U : gauge field,
- trace is over space-time, color, taste
- $D_{s}^{\dagger}=-D_{s}$: eigenvalues are purely imaginary or zero.

$$
\begin{equation*}
D_{s} f_{\lambda}(x)=i \lambda f_{\lambda}(x) \tag{2}
\end{equation*}
$$

- $\varepsilon D_{s}=-D_{s} \varepsilon$ for $\varepsilon=\left[\gamma_{5} \otimes \xi_{5}\right]$: nonzero eigenvalues exist as \pm pairs.
- In terms of the eigenvalues,

$$
\begin{align*}
\langle\bar{\psi} \psi\rangle & =-\frac{1}{V N_{t}} \sum_{\lambda} \frac{1}{i \lambda+m} \quad \text { simple pole as } m \rightarrow 0 \tag{3}\\
& =-\frac{1}{V N_{t}} \sum_{\lambda>0} \frac{2 m}{\lambda^{2}+m^{2}}-\frac{\tilde{n}_{+}+\tilde{n}_{-}}{V N_{t} m} \tag{4}
\end{align*}
$$

where $\tilde{n}_{ \pm}$are the numbers of zero modes with $P_{ \pm}=\frac{1 \pm \varepsilon}{2}$ projection.

- To subtract out the simple poles, we need to find the zero modes of D_{s}.
- One can show that the total number of the zero modes of D_{s} is equal to that of the zero modes of the continuum Dirac operator D. ([1])

$$
\begin{equation*}
\tilde{n}_{+}+\tilde{n}_{-}=n_{+}+n_{-} \tag{5}
\end{equation*}
$$

where n_{+}and n_{-}are the number of right-handed and left-handed zero modes of D, respectively.

Spectral Flow

- Consider a Hermitian operator H_{s} :

$$
\begin{equation*}
H_{s} \equiv-i D_{s}+\mu\left[\gamma_{5} \otimes \mathbb{1}\right] \tag{6}
\end{equation*}
$$

- Eigenvalues of H_{s} are real: $H_{s} f_{s}(x, \mu)=\lambda_{s}(\mu) f_{s}(x, \mu)$.

$$
\begin{equation*}
\lambda_{s}(\mu)=\left\langle f_{s}(\mu)\right| H_{s}\left|f_{s}(\mu)\right\rangle \tag{7}
\end{equation*}
$$

- $\lambda_{s}(\mu=0)=\lambda$ and $f_{s}(x, \mu=0)=f_{\lambda}(x)$ for λ and f_{λ} in Eq. (2).
- Taking derivative with respect to μ,

$$
\begin{equation*}
\lambda_{s}^{\prime}(\mu)=\left\langle f_{s}(\mu)\right|\left[\gamma_{5} \otimes \mathbb{1}\right]\left|f_{s}(\mu)\right\rangle \tag{8}
\end{equation*}
$$

- We define the chirality of the zero modes by

$$
\begin{equation*}
\operatorname{sign}\left(\lim _{\lambda \rightarrow 0}\left[\lim _{\mu \rightarrow 0} \lambda_{s}^{\prime}(\mu)\right]\right)= \pm 1 \tag{9}
\end{equation*}
$$

- We can determine the chirality by spectral flow method.

Chirality of Zero Modes

- $Z= \pm 1$: quantum number of $\varepsilon=\left[\gamma_{5} \otimes \xi_{5}\right]$
$X= \pm 1:$ quantum number of $\left[\gamma_{5} \otimes \mathbb{1}\right]$
$Y= \pm 1:$ quantum number of $\left[\mathbb{1} \otimes \xi_{5}\right]$

$n_{X Y}$	X	Y	$Z=X Y$
n_{++}	+1	+1	+1
n_{+-}	+1	-1	-1
n_{-+}	-1	+1	-1
n_{--}	-1	-1	+1

$n_{X Y}$ is the number of zero modes with X and Y quantum numbers

- We will measure the entries of this table by spectral flow method.

Topological Charge

- $Q=\frac{1}{32 \pi^{2}} \int d^{4} x \varepsilon_{\mu \nu \rho \sigma} \operatorname{tr}\left[F_{\mu \nu}(x) F_{\rho \sigma}(x)\right]=n_{+}-n_{-}$
- can be measured from the gauge field configuration with proper smoothing. We used APE smearing with the parameter $\alpha=0.45$ ([2]) (In plots, APE_MxN means that $F_{\mu \nu}$ is calculated from $M \times N$ rectangular clover leaves, and 5Li means 5 Loop improvement in [3].)

- topological charge distribution for a $20^{3} \times 64 \mathrm{MILC}$ asqtad lattice

- We can compare the results with those by the spectral flow method

References

[1] N. Cundy, H. Jeong, and W. Lee PoS LATTICE2015 (2015) 066.
[2] A. Hasenfratz and C. Nieter Phys. Lett. B439 (1998) 366-372, [hep-lat/9806026].
[3] P. de Forcrand, M. Garcia Perez, and I.-O. Stamatescu Nucl. Phys. B499 (1997) 409-449, [hep-lat/9701012].

