Calculation of Quark Condensates and Chirality using Improved Staggered Fermions

Hwancheol Jeong, Chulwoo Jung, Wonkyeong Kim, Weonjong Lee

Introduction

- We study quark condensates using improved staggered fermions.
- We search zero modes of the Dirac operator to subtract out their contributions from the quark condensate, in which they give simple poles in the chiral limit.
- We also identify the quantum numbers of those zero modes using spectral flow method in the staggered fermion formalism.

Quark Condensate for Staggered Fermions

• quark condensate:

$$\langle \bar{\psi}\psi \rangle = -\frac{1}{VN_t} \left\langle \text{Tr } \frac{1}{D_s + m} \right\rangle_U$$
 (1)

- $-D_s$: staggered Dirac operator, m: quark mass
- -V: lattice volume, N_t : number of tastes, U: gauge field,
- trace is over space-time, color, taste
- $D_s^{\dagger} = -D_s$: eigenvalues are purely imaginary or zero.

$$D_s f_{\lambda}(x) = i\lambda f_{\lambda}(x) \tag{2}$$

- $\varepsilon D_s = -D_s \varepsilon$ for $\varepsilon = [\gamma_5 \otimes \xi_5]$: nonzero eigenvalues exist as \pm pairs.
- In terms of the eigenvalues,

$$\langle \bar{\psi}\psi\rangle = -\frac{1}{VN_t} \sum_{\lambda} \frac{1}{i\lambda + m} \quad \text{simple pole as } m \to 0$$
 (3)
$$= -\frac{1}{VN_t} \sum_{\lambda > 0} \frac{2m}{\lambda^2 + m^2} - \underbrace{\left(\frac{\tilde{n}_+ + \tilde{n}_-}{VN_t m}\right)}$$
 (4)

where \tilde{n}_{\pm} are the numbers of zero modes with $P_{\pm} = \frac{1 \pm \varepsilon}{2}$ projection.

- To subtract out the simple poles, we need to find the zero modes of D_s .
- One can show that the total number of the zero modes of D_s is equal to that of the zero modes of the continuum Dirac operator D. ([1])

$$\tilde{n}_{+} + \tilde{n}_{-} = n_{+} + n_{-} \tag{5}$$

where n_+ and n_- are the number of right-handed and left-handed zero modes of D, respectively.

Spectral Flow

• Consider a *Hermitian* operator H_s :

$$H_s \equiv -iD_s + \mu[\gamma_5 \otimes \mathbb{1}] \tag{6}$$

• Eigenvalues of H_s are real: $H_s f_s(x,\mu) = \lambda_s(\mu) f_s(x,\mu)$.

$$\lambda_s(\mu) = \langle f_s(\mu) | H_s | f_s(\mu) \rangle \tag{7}$$

- $\lambda_s(\mu=0)=\lambda$ and $f_s(x,\mu=0)=f_\lambda(x)$ for λ and f_λ in Eq. (2).
- Taking derivative with respect to μ ,

$$\lambda_s'(\mu) = \langle f_s(\mu) | [\gamma_5 \otimes \mathbb{1}] | f_s(\mu) \rangle \tag{8}$$

• We define the chirality of the zero modes by

$$\operatorname{sign}\left(\lim_{\lambda \to 0} \left[\lim_{\mu \to 0} \lambda_s'(\mu)\right]\right) = \pm 1, \tag{9}$$

• We can determine the chirality by **spectral flow** method.

Chirality of Zero Modes

• $Z = \pm 1$: quantum number of $\varepsilon = [\gamma_5 \otimes \xi_5]$ $X = \pm 1$: quantum number of $[\gamma_5 \otimes 1]$ $Y = \pm 1$: quantum number of $[1 \otimes \xi_5]$

n_{XY}	X	Y	Z = XY
n_{++}	+1	+1	+1
n_{+-}	+1	-1	-1
n_{-+}	-1	+1	-1
$n_{}$	-1	<u>-1</u>	+1

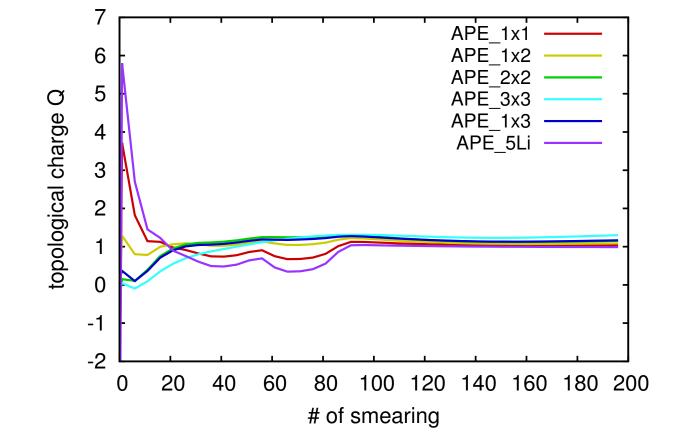
 n_{XY} is the number of zero modes with X and Y quantum numbers

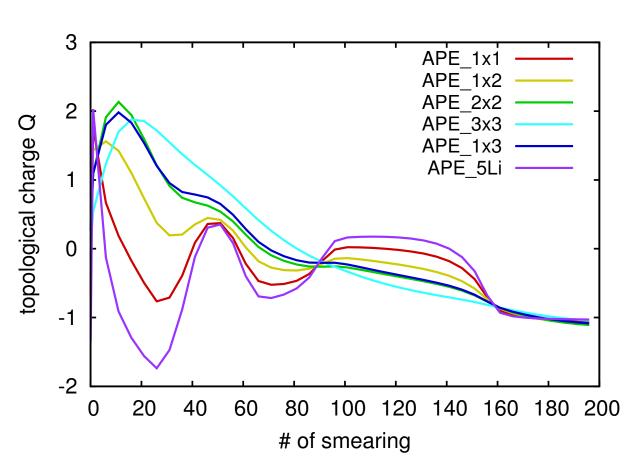
• We will measure the entries of this table by spectral flow method.

Topological Charge

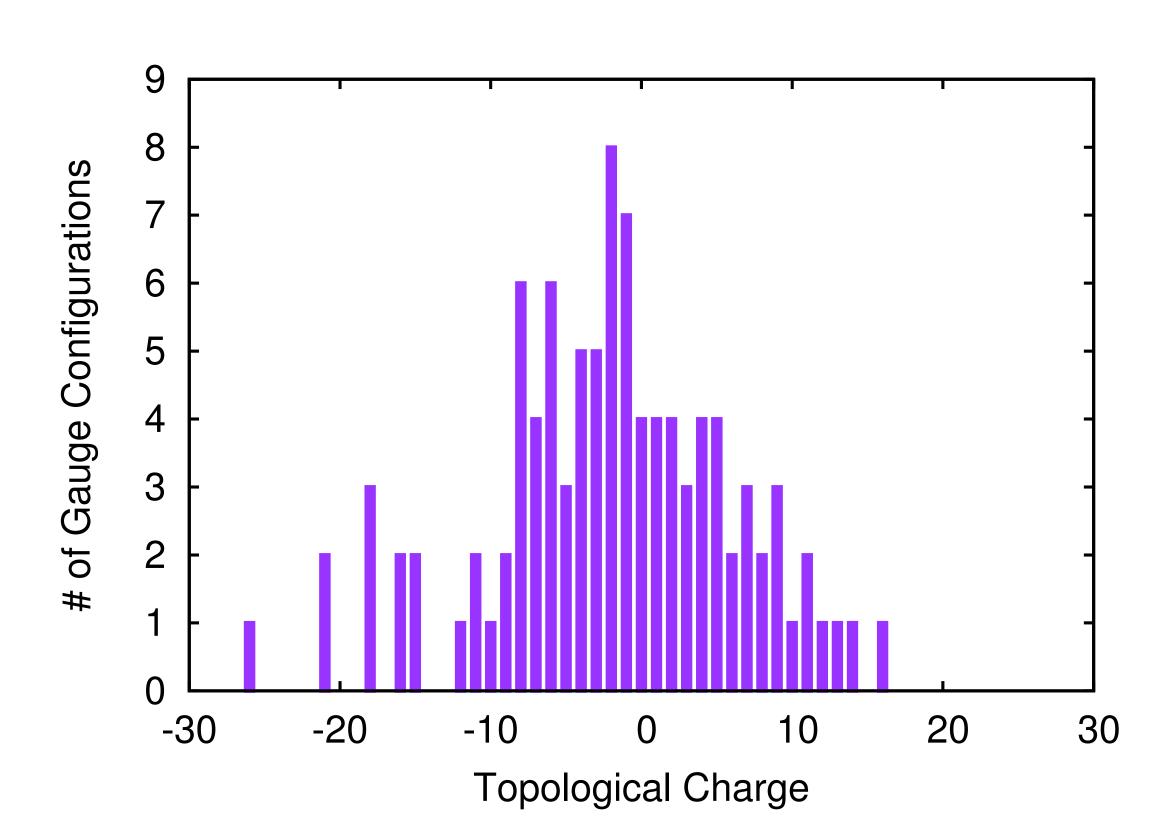
•
$$Q = \frac{1}{32\pi^2} \int d^4x \, \varepsilon_{\mu\nu\rho\sigma} \, \text{tr} \left[F_{\mu\nu}(x) F_{\rho\sigma}(x) \right] = n_+ - n_-$$

• can be measured from the gauge field configuration with proper smoothing. We used APE smearing with the parameter $\alpha = 0.45$ ([2]) (In plots, APE_MxN means that $F_{\mu\nu}$ is calculated from $M \times N$ rectangular clover leaves, and 5Li means 5 Loop improvement in [3].)





• topological charge distribution for a $20^3 \times 64$ MILC asqtad lattice



• We can compare the results with those by the spectral flow method

References

- [1] N. Cundy, H. Jeong, and W. Lee *PoS* **LATTICE2015** (2015) 066.
- [2] A. Hasenfratz and C. Nieter *Phys. Lett.* **B439** (1998) 366–372, [hep-lat/9806026].
- [3] P. de Forcrand, M. Garcia Perez, and I.-O. Stamatescu *Nucl. Phys.* **B499** (1997) 409–449, [hep-lat/9701012].