Chiral condensate from OPE of the overlap quark propagator

Zhaofeng Liu

Institute of High Energy Physics, Beijing

Southampton, 25 July 2016

Collaborators: Chao Wang, Yujiang Bi, Ying Chen, Ming Gong

Outline

- Motivation
- Lattice set up
- Preliminary results
- Summary

Motivation

• The quark chiral condensate $\langle \bar{\psi}\psi\rangle$ is one of the two LECs in leading order $\chi {\rm PT}.$

$$\langle \bar{u}u\rangle = -\Sigma = -BF^2.$$

- It is an order parameter for chiral symmetry breaking.
- It is an input parameter in QCD sum rules.

Motivation

• The quark chiral condensate $\langle \bar{\psi}\psi \rangle$ is one of the two LECs in leading order χ PT.

$$\langle \bar{u}u\rangle = -\Sigma = -BF^2.$$

- It is an order parameter for chiral symmetry breaking.
- It is an input parameter in QCD sum rules.
- Many ways on the lattice are being used to determine its value.
 - Chiral extrapolation of pseudoscalar meson masses and decay constants.
 - Finite-size study of correlators in the ϵ -regime.
 - Comparing the distribution of the low-lying eigenvalues of the Dirac operator to RMT predictions in a given topological sector.

FLAG, arXiv:1607.00299 [hep-lat]

What we are doing

- Fitting lattice data of quark propagator in Landau gauge to OPE formula to extract $\langle \bar{\psi}\psi \rangle$.
- The quark propagator in momentum space $S_q(p)$ can be written as

$$S_q(p) = \frac{S(p^2)}{p^2} + \frac{p}{p^2}V(p^2).$$

• The renormalized scalar form factor $S(p^2, \mu)$ has an OPE of the form

$$S(p^2, \mu) = S_0(p^2, \mu) m_q(\mu) + \frac{C_{m_q^3}}{p^2} m_q^3(\mu) + \frac{C_{m_q A^2}}{p^2} \langle m_q A^2 \rangle + \frac{C_{\bar{\psi}\psi}}{p^2} \langle \bar{\psi}\psi \rangle$$

Operators up to mass dimension three are included

$$A^2 \equiv A^a_\mu A^{a\mu}, m^2, m^3, mA^2, \bar{\psi}\psi.$$

[Chetyrkin & Maier, JHEP01(2010)092]

Formulae

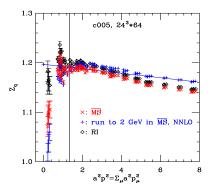
- The pure perturbative contribution $S_0(p^2, \mu)$ was given in [Chetyrkin & Retey, NPB 2000] at 3-loop level.
- The Wilson coefficients $C_?$ in the $\overline{\rm MS}$ scheme were given in [Chetyrkin & Maier, JHEP01(2010)092] also at 3-loop level.
- The quark propagator $S_q(p)$ can be calculated on the lattice.

$$Z_q(\mu, a)S_q(p, a) = S_q^R(p, \mu), \quad \frac{1}{12} \text{Tr} S_q^R(p, \mu) = \frac{S(p^2, \mu)}{p^2}$$

- A fitting window $\Lambda_{\rm QCD}^2 \ll p^2 \ll (\pi/a)^2$ is needed.
- Fittings to Wilson twisted mass quark propagators were investigated in [Burger et al., PRD2013] with $N_f = 2$.

Lattice setup

Table: Parameters of configurations with 2+1 flavor dynamical domain wall fermions (RBC-UKQCD). [Aoki et al., PRD 2011]


	label	am _{sea}	volume	N_{conf}
1.75(4)	c005	0.005/0.04	$24^{3} \times 64$	92
	c01	0.01/0.04	$24^3 \times 64$	88
	c02	0.02/0.04	$24^3 \times 64$	138

- The lattice spacing is from [Yang, ZL et al., PRD 2015]
- Overlap valence quark mass $am_q = 0.0062, 0.0089, 0.0102, 0.0135,$ 0.0172. 0.0243. 0.0365. 0.0489
- The pion masses range from about 220 MeV to 600 MeV.
- Point source quark propagators. Statistical errors are from Jackknife.

Quark field renormalization

- The RI/MOM scheme was used to calculate the renormalization constants of quark bilinear operators for our lattice setup. [ZL et al., 1312.7628[hep-lat], PRD]
- $Z_q^{RI}(p^2 = \mu^2)$ was already obtained $(\psi_R = Z_q^{1/2}\psi)$.
- Now it is converted to $Z_a^{\overline{\rm MS}}$ by using the 3-loop conversion ratio given in [Chetyrkin & Retey NPB(2000)].
- Then we run it to $\mu_0 = 2$ GeV from all available initial scale p^2 in the MS scheme (3-loop).
- Finally a linear extrapolation in $a^2p^2(>5)$ is done to reduce $\mathcal{O}(a^2p^2)$ discretization effects.
- To reduce Lorentz noninvariant discretization errors, the momenta used are close to the diagonal line: $p^{[4]}/(p^2)^2 < 0.32$, $p^{[n]} = \sum_{u} p_u^n$.

Quark field Renormalization

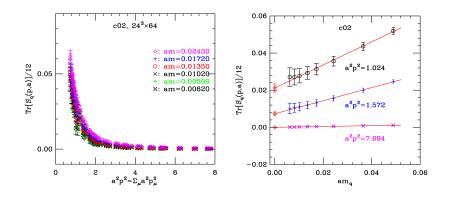
ensemble	c02	c01	c005
$Z_q^{\overline{ m MS}}$ (2 GeV)	1.2022(20)	1.2095(33)	1.1968(19)

Table: $Z_q^{\overline{\rm MS}}(2~{\rm GeV})$ on the $24^3 imes 64$ lattices. Statistical errors only.

Scalar form factor in the chiral limit

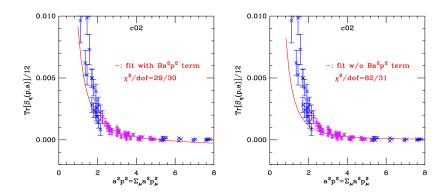
In the quark massless limit,

$$\begin{split} S(p^2,\mu) &= S_0(p^2,\mu) m_q(\mu) + \frac{C_{m_q^3}}{p^2} m_q^3(\mu) + \frac{C_{m_qA^2}}{p^2} \langle m_qA^2 \rangle + \frac{C_{\bar{\psi}\psi}}{p^2} \langle \bar{\psi}\psi \rangle \\ \Longrightarrow S(p^2,\mu) &= \frac{C_{\bar{\psi}\psi}}{p^2} \langle \bar{\psi}\psi \rangle (\mu). \end{split}$$


Thus we can fit the lattice data with

$$\frac{1}{12} \operatorname{Tr} S_q^R(p,\mu) = \frac{C_{\bar{\psi}\psi}}{(p^2)^2} \langle \bar{\psi}\psi \rangle.$$

• In lattice units and take into account $\mathcal{O}(a^2p^2)$ effects,


$$\frac{1}{12}\operatorname{Tr}\frac{S_q(p,a)}{a}=\frac{C_{\bar{\psi}\psi}}{Z_q(\mu,a)(a^2p^2)^2}a^3\langle\bar{\psi}\psi\rangle+Ba^2p^2.$$

Scalar form factor in the chiral limit

- $ap = (2\pi k_i/L, (2k_4+1)\pi/T), \ k_{\mu} = -6, -5, ..., 6. \ p^{[4]}/(p^2)^2 < 0.32$
- The linear extrapolations in am_q at all a^2p^2 have good χ^2/dof .
- Similarly on the other ensembles.

Fitting of the scalar form factor

- $a^2p^2 \in [2.2, 5.3]$. The Ba^2p^2 term reduces $\chi^2/{\rm dof}$ significantly.
- ullet Using lattice spacing 1/a=1.75(4) GeV, on ensemble c02 one gets

$$\langle ar{\psi}\psi
angle^{\overline{
m MS}}$$
(2 GeV) $=-$ (277(10) MeV) 3 .

Dependence on the fitting range

• $a^2p^2 \in [2.2, 5.3]$ corresponds to $p^2 \in [6.7, 16.2]$ GeV². $\chi^2/\text{dof} = 29/30$.

Table: $\langle \bar{\psi}\psi \rangle^{\overline{\rm MS}}$ (2 GeV) from different fitting ranges.

2 2	2 (2)	2 / 1 6	(/ 7 /) 1/2 /
$a^2p^2 \in$	$p^2 \in /GeV^2$	$\chi^2/{\sf dof}$	$(\langlear\psi\psi angle)^{1/3}/MeV$
[2.2, 5.5]	[6.7, 16.8]	1.28	-270(10)
[2.2, 5.3]	[6.7, 16.2]	0.97	-277(10)
[2.2, 5.1]	[6.7, 15.6]	1.02	-276(10)
[2.2, 4.9]	[6.7, 15.0]	1.06	-276(10)
[2.2, 4.7]	[6.7, 14.4]	1.07	-283(11)
[2.6, 5.3]	[8.0, 16.2]	1.03	-271(11)
[2.4, 5.3]	[7.4, 16.2]	0.98	-274(10)
[2.0, 5.3]	[6.1, 16.2]	1.06	-278(9)
[1.8, 5.3]	[5.5, 16.2]	1.20	-285(9)

Truncation effects

- The evaluations of α_s and $C_{\bar{\psi}\psi}$ are truncated at the same n-loop (n=1,2,3).
- $\alpha_s^{\overline{\rm MS}}(2~{\rm GeV})$ is obtained by using $\Lambda_{\rm QCD}^{\overline{\rm MS}}=339(10)$ MeV for 3 flavors. [PDG2012]
- Fitting range: $a^2p^2 \in [2.2, 5.3]$.

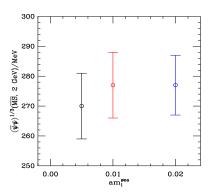
	χ^2/dof	$(\langlear\psi\psi angle)^{1/3}/{\sf MeV}$
1	0.98	-263(9)
2	0.98	-292(10)
3	0.97	-277(10)

Results from ensemble c01

• $a^2p^2 \in [1.8, 3.8]$ corresponds to $p^2 \in [5.5, 11.6]$ GeV². $\chi^2/{\rm dof} = 25/26$.

Table: $\langle \bar{\psi}\psi \rangle^{\overline{\rm MS}}$ (2 GeV) from different fitting ranges on ensemble c01.

$a^2p^2 \in$	$p^2 \in /GeV^2$	$\chi^2/{\sf dof}$	$(\langle ar{\psi}\psi angle)^{1/3}/MeV$
[1.8, 3.8]	[5.5, 11.6]	0.95	-277(11)
[1.8, 3.6]	[5.5, 11.0]	0.99	-278(12)
[1.8, 3.4]	[5.5, 10.4]	1.08	-273(13)
[2.2, 3.8]	[6.7, 11.6]	0.80	-279(17)
[2.0, 3.8]	[6.1, 11.6]	0.71	-273(14)
[1.6, 3.8]	[4.9, 11.6]	1.31	-297(9)


Results from ensemble c005

• $a^2p^2 \in [1.4, 2.4]$ corresponds to $p^2 \in [4.3, 7.4]$ GeV². $\chi^2/\text{dof} = 22/17$.

Table: $\langle \bar{\psi}\psi \rangle^{\overline{\rm MS}}$ (2 GeV) from different fitting ranges on ensemble c005.

$a^2p^2 \in$	$p^2 \in /GeV^2$	$\chi^2/{\sf dof}$	$(\langle ar{\psi}\psi angle)^{1/3}/MeV$
[1.4, 2.6]	[4.3, 8.0]	1.40	-280(10)
[1.4, 2.4]	[4.3, 7.4]	1.30	-270(11)
[1.4, 2.2]	[4.3, 6.7]	1.38	-281(15)
[1.7, 2.6]	[5.2, 8.0]	1.34	-267(13)
[1.5, 2.6]	[4.6, 8.0]	1.37	-273(12)
[1.3, 2.6]	[4.0, 8.0]	1.35	-283(9)

Light sea quark mass dependence

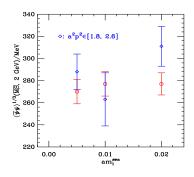
- The sea quark mass dependence seems not big in our data.
- A constant fit gives $\langle \bar{\psi}\psi \rangle^{\overline{\rm MS}}$ (2 GeV) =~ -(275 MeV)³.

Summary

- We try to extract the quark chiral condensate from overlap quark propagators in Landau gauge on 2+1 flavor dynamical DWF configurations.
- A fitting window in momentum seems to exist to give a stable result for $\langle \bar{\psi}\psi \rangle$.
- ullet A main systematic uncertainty comes from truncation effects in $C_{ar{\psi}\psi}.$

Summary

- We try to extract the quark chiral condensate from overlap quark propagators in Landau gauge on 2+1 flavor dynamical DWF configurations.
- A fitting window in momentum seems to exist to give a stable result for $\langle \bar{\psi}\psi \rangle$.
- ullet A main systematic uncertainty comes from truncation effects in $C_{ar{\psi}\psi}.$
- The analysis is done on three ensembles with different sea quark masses. We are increasing some of the statistics...
- Hope to do an analysis on a finer lattice...
- Fitting of the vector form factor of the quark propagator...


Summary

- We try to extract the quark chiral condensate from overlap quark propagators in Landau gauge on 2+1 flavor dynamical DWF configurations.
- A fitting window in momentum seems to exist to give a stable result for $\langle \bar{\psi}\psi \rangle$.
- ullet A main systematic uncertainty comes from truncation effects in $C_{ar{\psi}\psi}.$
- The analysis is done on three ensembles with different sea quark masses. We are increasing some of the statistics...
- Hope to do an analysis on a finer lattice...
- Fitting of the vector form factor of the quark propagator...

Thank you for your attention!

Extra Slides

Fitting in a same momentum range

• Require a same fitting range $a^2p^2 \in [1.8, 2.6]$ on all three ensembles. dof=11

ensemble	$\chi^2/{\sf dof}$	$(\langlear\psi\psi angle)^{1/3}/{\sf MeV}$
c02	1.36	-311(18)
c01	1.51	-263(24)
c005	1.45	-288(16)