# Numerical determination of the $\Lambda$ -parameter in SU(3) gauge theory from the twisted gradient flow coupling



Ken-Ichi Ishikawa, Issaku Kanamori, Yuko Murakami, Ayaka Nakamura, Masanori Okawa, and <u>Ryoichiro Ueno</u> *Graduate School of Science, Hiroshima University* 



The 34<sup>th</sup> International Symposium on Lattice Field Theory Southampton, UK

24-30 July 2016

#### Outline

#### 1. Introduction

- Strategy
- Twisted Gradient Flow coupling
- 2. Lattice Setup
- 3. Results
  - $\Lambda$ -parameter,  $L_{\max} \Lambda_{TGF}$
  - Hadronic Scale
  - $\Lambda$ -parameter ratio,  $\Lambda_{SF}/\Lambda_{TGF}$
  - Evaluation of  $\Lambda_{\overline{\text{MS}}}$
- 4. Summary



R. UENO, Lattice 2016, July 24-30 2016, Univ. of Southampton, UK

#### 1. Introduction

• We calculate  $\Lambda_{\overline{MS}}$  from the twisted gradient flow (TGF) coupling.  $\rightarrow$  Details are explained later.

$$\Lambda_{\overline{\mathrm{MS}}} = \mu (b_0 g_{\overline{\mathrm{MS}}}^2(\mu))^{-\frac{b_1}{2b_0}} \exp\left(-\frac{1}{2b_0 g_{\overline{\mathrm{MS}}}^2(\mu)}\right) \exp\left(\int_0^{g_{\overline{\mathrm{MS}}}^2(\mu)} \mathrm{d}\overline{g}\left(\frac{1}{\beta(\overline{g})} + \frac{1}{b_0 \overline{g}^3} - \frac{b_1}{b_0^2 \overline{g}}\right)\right)$$

- $b_0 = \frac{11}{3} \frac{N}{16\pi^2}$  and  $b_1 = \frac{34}{3} \left(\frac{N}{16\pi^2}\right)^2$  are just constants.
- To relate  $\Lambda_{\overline{\rm MS}}$  with physical quantity, we consider two hadronic scales,  $A_{\rm phys}$ , with a mass dimension.

• Strategy: 
$$\frac{\Lambda_{\overline{\text{MS}}}}{A_{\text{phys}}} = \frac{\Lambda_{\overline{\text{MS}}}}{\Lambda_{\text{SF}}} \cdot \frac{\Lambda_{\text{SF}}}{\Lambda_{\text{TGF}}} \cdot \frac{L_{\text{max}}\Lambda_{\text{TGF}}}{L_{\text{max}}A_{\text{phys}}}$$

• Perturbative calculations with the TGF scheme are quite complicated since we introduce the flow time.

 $\rightarrow$  Use the SF scheme as an intermediate scheme

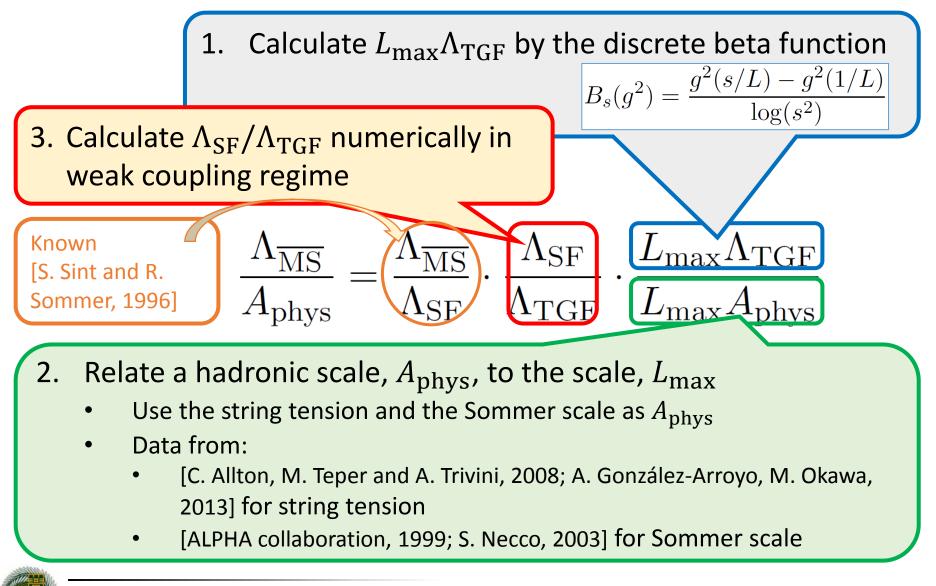
 $\rightarrow$  Evaluate each piece numerically

• Our calculations are for the SU(3) pure gauge theory.



R. UENO, Lattice 2016, July 24-30 2016, Univ. of Southampton, UK

#### 1-1. Strategy



R. UENO, Lattice 2016, July 24-30 2016, Univ. of Southampton, UK

#### 1-2. Twisted Gradient Flow coupling

- Ramos proposed to use the twisted b.c. for gradient flow as gauge b.c., and analyzed the SU(2) coupling by using the step scaling function. [A. Ramos, 2014]
- Wilson gauge action with the twisted b.c. on *x*-*y* plane:

$$S_{\rm W}(U) = \frac{\beta}{2N} \sum_{n,\mu\neq\nu} Z_{n,\mu,\nu} \operatorname{Tr} \left[ U_{n,\mu} U_{n+\mu,\nu} U_{n+\nu,\mu}^{\dagger} U_{n,\nu}^{\dagger} \right], \ Z_{n=(1,1,n_3,n_4),1,2} = \exp\left(\frac{2\pi i}{N}\right)$$

• Imposing the twisted b.c. is equivalent to add the factor  $Z_n$  into the action.

• Flow eq.: 
$$\frac{\mathrm{d}V_{n,\mu}(t)}{\mathrm{d}t} = -\frac{2N}{\beta} \left\{ \partial_{n,\mu} S_{\mathrm{W}}(V) \right\} V_{n,\mu}(t), \quad V_{n,\mu}(t=0) = U_{n,\mu}$$

- We obtain the energy density, E(t), from the solution of this equation.
- TGF coupling:  $g_{\text{TGF}}^2(1/L) = \mathcal{N}_{\text{T}}^{-1}(c, a/L)t^2 \langle E(t) \rangle \Big|_{t=c^2 L^2/8}$  $c^4 \sum_{\mu=1}^{\prime} \frac{c^2 L^2}{\hat{P}^2} \tilde{P}^2 C^2 - (\tilde{P}_{\mu} C_{\mu})^2$

$$\mathcal{N}_{\rm T}^{-1}(c, a/L) = \frac{c}{128} \sum_{P} e^{-\frac{c-L^2}{4}P^2} \frac{I - C - (I \mu C \mu)}{\hat{P}^2}$$

• Renormalization scale:  $\mu = \frac{1}{\sqrt{8t}} = \frac{1}{cL}$  [M. Lüscher, 2010]



R. UENO, Lattice 2016, July 24-30 2016, Univ. of Southampton, UK

#### 2. Lattice Setup

- Wilson gauge action with the twisted b. c.  $S_{W}(U) = \frac{\beta}{2N} \sum Z_{n,\mu,\nu} \operatorname{Tr} \left[ U_{n,\mu} U_{n+\mu,\nu} U_{n+\nu,\mu}^{\dagger} U_{n,\nu}^{\dagger} \right]$
- Gauge conf. are generated by the heat bath method
- TGF coupling,  $g_{TGF}^2(1/L,\beta)$

| L/a             | 12   | 16   | 18   | 24   | 36   |
|-----------------|------|------|------|------|------|
| # data points   | 14   | 14   | 15   | 14   | 11   |
| Largest $meta$  | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
| Smallest $meta$ | 6.11 | 6.3  | 6.29 | 6.5  | 6.9  |

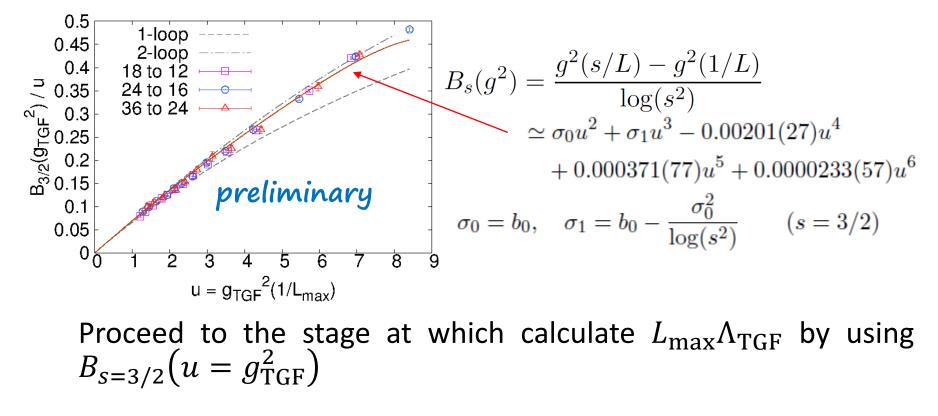
- Weak couplings,  $g_{\rm SF}^2(1/L,\beta)$  and  $g_{\rm TGF}^2(1/L,\beta)$ 
  - L/a = 10, 12, 16, 18 and  $\beta = 40, 60, 80$  at each L/a.



R. UENO, Lattice 2016, July 24-30 2016, Univ. of Southampton, UK

#### 3-1. $\Lambda$ -parameter, $L_{\max} \Lambda_{TGF}$

• Calculate the discrete beta function at each lattice and fit them to obtain the continuum discrete beta function





R. UENO, Lattice 2016, July 24-30 2016, Univ. of Southampton, UK

Numerical determination of the  $\Lambda$ -parameter in SU(3) gauge theory from the twisted gradient flow coupling

 $\frac{\Lambda_{\overline{\mathrm{MS}}}}{A_{\mathrm{phys}}} = \frac{\Lambda_{\overline{\mathrm{MS}}}}{\Lambda_{\mathrm{SF}}} \cdot \frac{\Lambda_{\mathrm{SF}}}{\Lambda_{\mathrm{TGF}}} \cdot \frac{L_{\mathrm{max}}\Lambda_{\mathrm{TGF}}}{L_{\mathrm{max}}A_{\mathrm{phys}}}$ 

#### 3-1. $\Lambda$ -parameter, $L_{\max} \Lambda_{TGF}$

- $L_{\max}$  is the box size at which hadronic scale is defined.
- Initial value for the running:  $g_{TGF}^2(1/L_{max}) = 6.0, 6.1, \dots, 7.0$
- Changing the scale from  $1/L_{max}$  to  $s^n/L_{max}$  and running the coupling by using  $B_{3/2}(g_{TGF}^2)$ , we obtain the following table.

| $g^2_{ m TGF}$ | $L_{ m max}\Lambda_{ m TGF}$ |                                                                                                                                                                                           |
|----------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.0            | 0.576(18)                    | $-\mathbf{D}(-)1(-2)$                                                                                                                                                                     |
| 6.1            | 0.585(18)                    | $u_{j+1} = u_j + B_s(u_j)\log(s^2),$                                                                                                                                                      |
| 6.2            | 0.594(19)                    | $u_0 = g_{\text{TGF}}^2 (1/L_{\text{max}}),  u_j = g_{\text{TGF}}^2 (s^j/L_{\text{max}})$                                                                                                 |
| 6.3            | 0.602(19)                    |                                                                                                                                                                                           |
| 6.4            | 0.610(19)                    | $L_{\rm max}\Lambda_{\rm TGF} \simeq s^n \left( b_0 g_{\rm TGF}^2 (s^n / L_{\rm max}) \right)^{-\frac{b_1}{2b_0^2}} \exp\left[ -\frac{1}{2b_0 g_{\rm TGF}^2 (s^n / L_{\rm max})} \right]$ |
| 6.5            | 0.618(19)                    | $2b_0 g_{\text{TGF}}^2 (s^n/L_{\text{max}})$ $2b_0 g_{\text{TGF}}^2 (s^n/L_{\text{max}})$                                                                                                 |
| 6.6            | 0.626(20)                    |                                                                                                                                                                                           |
| 6.7            | 0.634(20)                    | Now we have the value of $I = \Lambda$ at each                                                                                                                                            |
| 6.8            | 0.641(20)                    | Now we have the value of $L_{\max}\Lambda_{TGF}$ at each                                                                                                                                  |
| 6.9            | 0.649(20)                    | value of the TGF coupling.                                                                                                                                                                |
| 7.0            | 0.656(21)                    |                                                                                                                                                                                           |



Numerical determination of the  $\Lambda$ -parameter in SU(3) gauge theory from the twisted gradient flow coupling

 $\frac{\Lambda_{\overline{\mathrm{MS}}}}{A_{\mathrm{phys}}} = \frac{\Lambda_{\overline{\mathrm{MS}}}}{\Lambda_{\mathrm{SF}}} \cdot \frac{\Lambda_{\mathrm{SF}}}{\Lambda_{\mathrm{TGF}}} \cdot \frac{L_{\mathrm{max}}\Lambda_{\mathrm{TGF}}}{L_{\mathrm{max}}A_{\mathrm{phys}}}$ 

#### 3-2. Hadronic Scale

#### • String tension, $L_{\max}\sqrt{\sigma}$ , and Sommer scale, $L_{\max}/r_0$

- We evaluate them by using data from:
  - [C. Allton, M. Teper and A. Trivini, 2008; A. González-Arroyo, M. Okawa, 2013] for the string tension
  - [ALPHA collaboration, 1999; S. Necco, 2003] for the Sommer scale.

| $g_{\rm TGF}^2$ | $L_{\max}\sqrt{\sigma}$ | $L_{\rm max}/r_0$ |
|-----------------|-------------------------|-------------------|
| 6.0             | 1.9302(80)              | 1.7056(88)        |
| 6.1             | 1.9589(79)              | 1.7209(86)        |
| 6.2             | 1.9866(78)              | 1.7472(88)        |
| 6.3             | 2.0150(79)              | 1.7663(87)        |
| 6.4             | 2.0470(76)              | 1.7905(86)        |
| 6.5             | 2.0725(77)              | 1.8060(88)        |
| 6.6             | 2.0966(78)              | 1.8232(87)        |
| 6.7             | 2.1200(79)              | 1.8374(90)        |
| 6.8             | 2.1443(79)              | 1.8600(88)        |
| 6.9             | 2.1665(80)              | 1.8798(86)        |
| 7.0             | 2.1911(82)              | 1.8962(85)        |

• First column: value of the TGF coupling as the renormalization condition

 $\frac{\Lambda_{\overline{\mathrm{MS}}}}{A_{\mathrm{phys}}} = \frac{\Lambda_{\overline{\mathrm{MS}}}}{\Lambda_{\mathrm{SF}}} \cdot \frac{\Lambda_{\mathrm{SF}}}{\Lambda_{\mathrm{TGF}}} \cdot \frac{L_{\mathrm{max}}\Lambda_{\mathrm{TGF}}}{L_{\mathrm{max}}A_{\mathrm{phys}}}$ 

- Second column: value of the string tension
- Third column: value of the Sommer scale

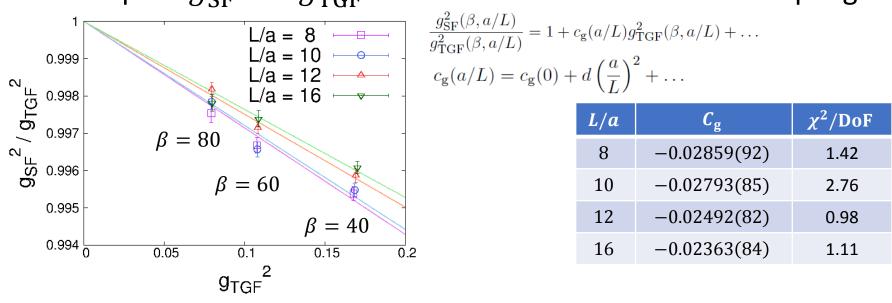
Now we have the value of  $L_{\max}\sqrt{\sigma}$  and  $L_{\max}/r_0$  at each value of the TGF coupling.



R. UENO, Lattice 2016, July 24-30 2016, Univ. of Southampton, UK

## **3-3.** $\Lambda$ -parameter ratio, $\Lambda_{SF}/\Lambda_{TGF}$

• Compute  $g_{\rm SF}^2$  and  $g_{\rm TGF}^2$  and evaluate the ratio of the couplings



- We have the coefficient  $c_{g}$  at each lattice.
- Taking the continuum limit of  $c_g$ , we obtain the  $\Lambda$ -parameter ratio.  $\frac{\Lambda_{\rm SF}}{\Lambda_{\rm TCE}} = \exp\left(\frac{c_{\rm g}(0)}{2b_0}\right)$



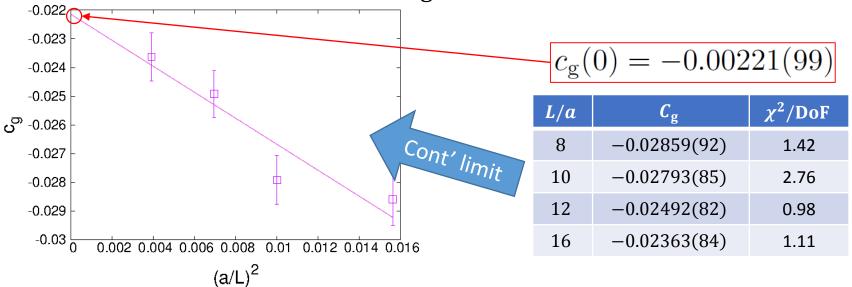
R. UENO, Lattice 2016, July 24-30 2016, Univ. of Southampton, UK

Numerical determination of the  $\Lambda$ -parameter in SU(3) gauge theory from the twisted gradient flow coupling

 $\frac{\Lambda_{\overline{\mathrm{MS}}}}{A_{\mathrm{phys}}} = \frac{\Lambda_{\overline{\mathrm{MS}}}}{\Lambda_{\mathrm{SF}}} \cdot \frac{\Lambda_{\mathrm{SF}}}{\Lambda_{\mathrm{TGF}}} \cdot \frac{L_{\mathrm{max}}\Lambda_{\mathrm{TGF}}}{L_{\mathrm{max}}A_{\mathrm{phys}}}$ 

### **3-3.** $\Lambda$ -parameter ratio, $\Lambda_{SF}/\Lambda_{TGF}$

• Taking the continuum limit of  $c_{
m g}$  and obtain the  $\Lambda$ -parameter ratio



 $\Lambda$ -parameter ratio between the SF and the TGF schemes:

$$\frac{\Lambda_{\rm SF}}{\Lambda_{\rm TGF}} = 0.8530(61)$$



R. UENO, Lattice 2016, July 24-30 2016, Univ. of Southampton, UK

Numerical determination of the  $\Lambda$ -parameter in SU(3) gauge theory from the twisted gradient flow coupling

 $\frac{L_{\max}\Lambda_{\mathrm{TGF}}}{L_{\max}A_{\mathrm{phys}}}$ 

 $rac{\Lambda_{
m SF}}{\Lambda_{
m TGF}}$ 

 $\frac{\Lambda_{\overline{\mathrm{MS}}}}{A_{\mathrm{phys}}} = \frac{\Lambda_{\overline{\mathrm{MS}}}}{\Lambda_{\mathrm{SF}}} \cdot$ 

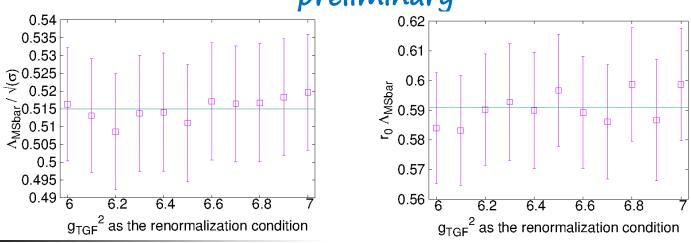
#### 3-4. Evaluation of $\Lambda_{\overline{MS}}$

 $\frac{\Lambda_{\overline{MS}}}{\sqrt{\sigma}} =$ 

 $\frac{\Lambda_{\overline{\text{MS}}}}{\Lambda_{\text{SF}}} \cdot \frac{\Lambda_{\text{SF}}}{\Lambda_{\text{TGF}}} \cdot \frac{L_{\text{max}}\Lambda_{\text{TGF}}}{L_{\text{max}}\sqrt{\sigma}}$ 

 $r_0 \Lambda_{\overline{\mathrm{MS}}} = \frac{\Lambda_{\overline{\mathrm{MS}}}}{\Lambda_{\mathrm{SF}}} \cdot \frac{\Lambda_{\mathrm{SF}}}{\Lambda_{\mathrm{TGF}}} \cdot \frac{L_{\mathrm{max}} \Lambda_{\mathrm{TGF}}}{L_{\mathrm{max}}/r_0}$ 

- $\mathcal{E}_{\mathcal{X}}$ . Calculate  $\Lambda_{\overline{\mathrm{MS}}}/\sqrt{\sigma}$  when  $g^2_{\mathrm{TGF}} = 6.4$ 
  - Substituting the result so far to our strategy:
    - $L_{\max} \Lambda_{\text{TGF}} = 0.610(19)$
    - $L_{\max}\sqrt{\sigma} = 2.0392(79)$
    - $\Lambda_{\rm SF} / \Lambda_{\rm TGF} = 0.8530(61)$
    - $\Lambda_{\rm SF}/\Lambda_{\overline{\rm MS}}=0.48811(1)$  [S. Sint and R. Sommer, 1996
  - We obtain  $\Lambda_{\overline{\rm MS}}/\sqrt{\sigma} = 0.514(17).$
- Results of  $\Lambda_{\overline{\text{MS}}}/\sqrt{\sigma}$  (left figure) and  $r_0 \Lambda_{\overline{\text{MS}}}$  (right figure) at each renormalization scale: *preliminary*





R. UENO, Lattice 2016, July 24-30 2016, Univ. of Southampton, UK

#### 3-4. Evaluation of $\Lambda_{\overline{MS}}$

• Finally we obtain the following results (preliminary):

$$\frac{\alpha_{\rm MS}}{\sqrt{\sigma}} = 0.515(17)_{\rm stat.} \left(\begin{smallmatrix} +5\\ -6 \end{smallmatrix}\right)_{\rm syst.}$$

 $r_0 \Lambda_{\overline{\text{MS}}} = 0.591(19)_{\text{stat.}}(7)_{\text{syst.}}$ 

• cf. [G. S. Bali and K. Schilling, 1993]

$$\frac{\Lambda_{\overline{\rm MS}}}{\sqrt{\sigma}} = 0.555(^{+19}_{-17}),$$

• cf. [ALPHA collaboration, 1999]

$$r_0\Lambda_{\overline{\mathrm{MS}}}=0.602(48).$$

Our results are consistent with known values in 1.6 $\sigma$  for the string tension,  $\Lambda_{\overline{\rm MS}}/\sqrt{\sigma}$ .



R. UENO, Lattice 2016, July 24-30 2016, Univ. of Southampton, UK

#### 4. Summary

• In this study

All results are preliminary.

- We computed  $g_{\rm TGF}^2$  in SU(3) pure gauge theory by the lattice simulation.
  - In poster session on Tuesday, Mr. E. Ibanez Bribian talks about the perturbative calculation.
- We calculated  $\Lambda_{SF}/\Lambda_{TGF}$  by lattice simulation:
  - $\frac{\Lambda_{\rm SF}}{\Lambda_{\rm TGF}} = 0.8530(61).$
- We evaluated  $\Lambda_{\overline{\rm MS}}/\sqrt{\sigma}$  and  $r_0\Lambda_{\overline{\rm MS}}$ :
  - $\frac{\Lambda_{\overline{\text{MS}}}}{\sqrt{\sigma}} = 0.515(17)_{\text{stat.}} \left( {}^{+5}_{-6} \right)_{\text{syst.}}, r_0 \Lambda_{\overline{\text{MS}}} = 0.591(19)_{\text{stat.}}(7)_{\text{syst.}}$
  - This results are consist of  $\Lambda_{SF}/\Lambda_{TGF}$  computation, i.e. they support the validity of the  $\Lambda_{SF}/\Lambda_{TGF}$  from our lattice simulation.
- We conclude that the twisted gradient flow method actually works as one of the renormalization scheme in pure QCD.



R. UENO, Lattice 2016, July 24-30 2016, Univ. of Southampton, UK