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The θ term

The Euclidean Yang-Mills Lagrangian with the topological term is

LE
θ =

1

4
F aµν(x)F a

µν(x)− iθq(x)

q(x) ≡ g2

64π2
ǫµνρσF

aµνF a ρσ

and the main features of q(x) are

q(x) = ∂µK
µ(x), Q =

∫

q(x)dx ∈ Z .

θ is an RG invariant parameter

Sign problem for θ 6= 0, θ ∈ R.

How does the free (or ground state) energy depends on θ?
General properties:

F (−θ,T ) = F (θ,T )

F (θ,T ) ≥ F (0,T )

C. Bonati (Dip. Fisica & INFN, Pisa) Large N θ-dependence Lattice 2016 3 / 15



General parametrization of the θ dependence

Assuming analyticity at θ = 0 and using F (T ,−θ) = F (T , θ) we have

F (θ,T )− F (0,T ) =
1

2
χ(T )θ2

[

1 + b2(T )θ2 + b4(T )θ4 + · · ·
]

The coefficients can be written using only expectation values computed
at θ = 0 as (〈· · · 〉0 = 〈· · · 〉θ=0)

χ =
1

V4
〈Q2〉0 b2 = −〈Q4〉0 − 3〈Q2〉20

12〈Q2〉0

b4 =
〈Q6〉0 − 15〈Q2〉0〈Q4〉0 + 30〈Q2〉30

360〈Q2〉0

Coefficients b2n parametrize the deviations of the distribution of
topological charge from a Gaussian in the theory at θ = 0.
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Large N scaling

F a
µνF

aµν and ǫµνρσF
aµνF a ρσ scale as N2

To have a nontrivial θ dependence in the large N limit we have to keep
θ̄ ≡ θ/N fixed, in such a way that θg2 does not scale with N

Assuming the large N limit not to be singular, the large N scaling form of
the free energy is thus (Witten 1980)

F (θ,T )− F (0,T ) = N2F̄ (θ̄,T )

where F̄ has the (asymptotic) expansion:

F̄ (θ̄,T ) =
1

2
χ̄θ̄2

[

1 + b̄2θ̄
2 + b̄4θ̄

4 + · · ·
]

.

By matching the powers of θ we obtain

χ = χ̄+ O(1/N2)

b2n = b̄2n/N
2n + O(1/N2n+2)
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Large N scaling of χ

Del Debbio, Panagopoulos, Vicari 0204125

C = χ/σ2, T = 0
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(see also Lucini, Teper, 0103027)

The main source of error is the value of the string tension. To improve
these results it is sufficient to have a more precise scale setting.
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b2 estimates
b2 for SU(3)

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01
b 2

Del Debbio
Panagopoulos
Vicari ’02

D’Elia ’03

Giusti 
Petrarca
Taglienti ’07

Panagopoulos 
Vicari ’11

Ce’ 
Consonni 
Engel 
Giusti ’15

Bonati 
D’Elia 
Scapellato ’16

For N > 3: b2|SU(4) = −0.013(7) and b2|SU(6) = −0.01(2)
from Del Debbio, Panagopoulos, Vicari 0204125.
b2ns are dimensionless: errors are (almost) independent of scale settings.
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Why is it difficult to evaluate b2n? (1)

General problems for all topological observables

Topology is well defined only in the continuum limit.
Several possible way out, we used cooling as smoother (see e.g.
Panagopoulos, Vicari 0803.1593, Bonati, D’Elia 1401.2441 for comparison of
different procedures).
Asymptotic freedom and topology ensures the correctness of virtually
all procedures as the continuum limit is approached.

Large autocorrelation times.
In theories without fermions this problem is less important but it gets
worse and worse as the number of colors increases.
We had to use very large statistics (for SU(6) around 6× 107

updates, 1 update = 1 heatbath + 5 overrelaxation).
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Why is it difficult to evaluate b2n? (2)

Specific problem for b2n: lack of self-averaging. Consider e.g.

b2 = −〈Q4〉0 − 3〈Q2〉20
12〈Q2〉0

In the thermodynamical limit the probability distribution of Q is
dominated by Gaussian fluctuation of typical size δQ ∼

√
χV4, the mean

value of the numerator grows ∼ V4, while its error ∼ χ2V 2
4 .

For b4 and higher b2ns the scaling is even worst.

Standard solution: do not study fluctuation observables “at zero external
field”, study instead the response to an external field (Milchev, Binder,

Heermann 1986).

In this case “external field” = nonvanishing θ. To avoid the sign problem
use θ = iθI , with θI ∈ R (Vicari, Panagopoulos 1109.6815).
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Details of the numerical procedure adopted
The adopted action was (SW is the usual Wilson action)

S [U] = SW [U]− θLQL[U], QL =
∑

x

qL(x)

qL(x) = − 1

29π2

±4
∑

µνρσ=±1

ǫ̃µνρσTr (Πµν(x)Πρσ(x)) .

θL gets a finite renormalization (θI = ZθL) and Z , χ, b2n have been
evaluated by fitting together the first four cumulants of Q:

〈Q〉
V = χZθL(1− 2b2Z

2θ2L + 3b4Z
4θ4L + . . . ) ,

〈Q2〉c
V = χ(1− 6b2Z

2θ2L + 15b4Z
4θ4L + . . . ) ,

〈Q3〉c
V = χ(−12b2ZθL + 60b4Z

3θ3L + . . . ) ,

〈Q4〉c
V = χ(−12b2 + 180b4Z

2θ2L + . . . ) .
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Results for b2 in SU(4) and SU(6)
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b2|SU(4) = −0.0155(20)
b2|SU(6) = −0.0045(15)

(b2|SU(3) = −0.0216(15) (C. Bonati, M. D’Elia, A. Scapellato 1512.01544))
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Large N scaling of b2
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With a fit b2 = b̄2/N
2 on N ≥ 4 one gets b̄2 = −0.23(3), NLO corrections

are compatible with zero and using b2 = c1/N
2c2 one gets c2 = 1.0(2).
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b4 bounds
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b4 . 5× 10−4 is a conservative bound for all N values.
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Why checking large N scaling?
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C. Bonati, M. D’Elia, H. Panagopoulos, E. Vicari 1301.7640, (C. Bonati, M. D’Elia,

A. Scapellato 1512.01544, Bonati, D’Elia, Rossi, Vicari 1607.06360 )

Since sometimes it fails! For T > Tc b2 is almost independent on N.
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Conclusion

The b2n coefficients characterize the θ dependence of the free (or
ground state) energy and they are challenging to estimate.

We presented the first numerical determination of b2 for SU(4) and
SU(6) performed with enough accuracy to verify the large N scaling

We presented stringent bound for b4 in SU(4) and SU(6)

The method adopted can be useful also in finite temperature
simulations, especially for T < Tc , and we applied it to refine our
previous study of the change of θ dependence at Tc .
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Thank you for your attention!
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Backup slides with something more
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Comparison between smoothing algorithms

Bonati, D’Elia 1401.2441
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Evolution of QL under cooling and
gradient flow in SU(6) at

β = 24.056.
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Overlap ambiguities

Del Debbio, Pica 0309145
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Cooling-like picture displaying the values of the top. susceptibility as a
function of the mass used in the overlap Dirac operator in SU(3).

C. Bonati (Dip. Fisica & INFN, Pisa) Large N θ-dependence Lattice 2016 15 / 15



Example of the global fit procedure
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Common fit to the first four cumulants of the topological charge for SU(4)
at coupling β = 11.008.
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Truncation systematics
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Test for systematics using two different truncation orders for SU(6).
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Finite volume effects
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Test for finite size effects in SU(6) at coupling β = 24.500.
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Dilute Instanton Gas Approximation
In general one has (e.g. Coleman “The uses of instantons”)

weak coupling approximation ⇒ semiclassical approximation

Slightly broader perspective:

possibility that a system can be described by means of weakly interacting
classical configurations even if the “elementary” coupling is not small

For weakly interacting instantons we have (DIGA, Gross, Pisarski, Yaffe 1981)

Zθ = Tre−Hθ/T ≈
∑ 1

n+!n−!
(V4D)n++n

−e−S0(n++n
−
)+iθ(n+−n

−
)

= exp
[

2V4De
−S0 cos θ

]

where 1/D is a typical 4−volume. Thus

F (θ,T )− F (0,T ) ≈ χ(T )(1− cos θ)
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