Progress update: Nucleon structure with $N_{\rm f} = 2 + 1$ Wilson fermions

Dalibor Djukanovic, Tim Harris, Georg von Hippel, Parikshit Junnarkar, Harvey Meyer, Hartmut Wittig

Helmholtz Institute Mainz

Lattice 2016, Southampton, England.

Outline

Introduction

- Measurements and ensemble parameters
- Truncated solver method

Preliminary analyses of isovector g_A , $G_E(Q^2)$ and $G_M(Q^2)$

- Excited states
- Dipole and z-expansion

Outlook

Introduction

We examine the spacelike isovector Sachs electromagnetic form factors

$$G_{\rm E}(Q^2) = F_1(Q^2) - \frac{Q^2}{2m_N^2}F_2(Q^2)$$
 and $G_{\rm M}(Q^2) = F_1(Q^2) + F_2(Q^2)$

and the isovector axial coupling, $g_A \equiv G_A(0)$ where

$$\langle N(\boldsymbol{p'}, s') | \bar{\psi} \gamma_{\mu} \psi | N(\boldsymbol{p}, s) \rangle = \bar{u}(\boldsymbol{p'}, s') \left[\gamma_{\mu} F_1(Q^2) + i \frac{\sigma_{\mu\nu} q_{\nu}}{2m_N} F_2(Q^2) \right] u(\boldsymbol{p}, s),$$

$$\langle N(\boldsymbol{p'}, s') | \bar{\psi} \gamma_5 \gamma_{\mu} \psi | N(\boldsymbol{p}, s) \rangle = \bar{u}(\boldsymbol{p'}, s') \left[\gamma_5 \gamma_{\mu} G_A(Q^2) + \frac{\gamma_5 q_{\mu}}{2m_N} G_P(Q^2) \right] u(\boldsymbol{p}, s).$$

These constitute difficult observables in particular due to

- excited state-contamination →
- signal-to-noise problem →

• other systematics probed by exploring parameter space $(a, m_{PS}, m_{PS}L)$

Lattice estimators

The effective form factors, e.g.

$$G_{\mathsf{E}}^{\mathsf{eff}}(Q^2) = \sqrt{\frac{2E_{Q^2}}{m + E_{Q^2}}} R_{V_0}(t, t_5; Q^2), \qquad g_{\mathsf{A}}^{\mathsf{eff}} = -iR_{A_3}(t, t_5; Q^2 = 0),$$

are defined in terms of the ratios

$$R_{J}(t,t_{s};Q^{2}) = \frac{C_{3,J}(t,t_{s};q)}{C_{2}(t_{s};q)} \sqrt{\frac{C_{2}(t_{s}-t;-q)C_{2}(t,0)C_{2}(t_{s};0)}{C_{2}(t_{s}-t;0)C_{2}(t;-q)C_{2}(t_{s};-q)}}$$

[Alexandrou et al.]

are computed for fixed ($p' = 0, t_s$) using sequential propagators

$$C_{3,j}(t,t_s;q) = \Gamma \langle \sum_{x,y} N(x,t_s)$$

 $\stackrel{\text{def}}{fr} \epsilon \quad \text{still contain contributions from excited states at finite } t_s \\ \implies \text{try to choose good interpolating operators } N(x, t)$

Parameter space

id	m_{π}/MeV	a/fm	L/a	$m_{\pi}L$	N _{meas}	t₅/fm
H102 H105 *C101	350 280 220	0.086 "	32 32 48	4.9 3.9 4.7	7988 11412 32416	{1.0, 1.1, 1.3} "
N200 *D200	280 200	0.064 ″	48 64	4.4 4.2	3200 13056	{0.7,0.8,1.0,1.1,1.2,1.3} {1.0,1.1,1.2,1.3}
N303 J303	330 280	0.05 "	64 "	4.8 4.1	-	{1.0, 1.1, 1.2, 1.3}

Ensembles generated using the CLS effort used in this work

- $N_{\rm f} = 2 + 1$ flavours of O(a)-improved Wilson clover fermion. [Bruno et al.]
- Open boundary conditions in time combat poor scaling of autocorrelation of topological charge as $a \rightarrow 0$. [Lüscher, Schäfer]
- Twisted-mass regulator guards against exceptional configurations. [Lüscher, Palombi]

Truncated solver method

Efficient measurements using the truncated solver method:

[Bali, 0910.3970; Shintani, 1402.0244]

$$\langle \mathcal{O} \rangle = \underbrace{\langle \mathcal{O}_{LP,N} \rangle}_{\text{cheap}} + \underbrace{\langle \mathcal{O} \rangle - \langle \mathcal{O}_{LP,1} \rangle}_{\text{expensive}}$$

The contribution of the bias correction $\langle \mathcal{O} \rangle - \langle \mathcal{O}_{LP,1} \rangle$ to the variance is small if

$$1 - \operatorname{Corr}(\mathcal{O}, \mathcal{O}_{LP, 1}) \ll \frac{N}{2} \implies \text{tune } N_{\text{iter}}$$

CLS $N_{f} = 2 + 1$ nucleon structure 6 / 14

Truncated solver method

Efficient measurements using the truncated solver method:

[Bali, 0910.3970; Shintani, 1402.0244]

$$\langle \mathcal{O} \rangle = \underbrace{\langle \mathcal{O}_{LP,N} \rangle}_{\text{cheap}} + \underbrace{\langle \mathcal{O} \rangle - \langle \mathcal{O}_{LP,1} \rangle}_{\text{expensive}}$$

The contribution of the bias correction $\langle \mathcal{O} \rangle - \langle \mathcal{O}_{LP,1} \rangle$ to the variance is small if

$$1 - \operatorname{Corr}(\mathcal{O}, \mathcal{O}_{LP, 1}) \ll \frac{N}{2} \qquad \Longrightarrow \qquad \text{tune } N_{\text{iter}}$$

Truncated solver method

Efficient measurements using the truncated solver method:

[Bali, 0910.3970; Shintani, 1402.0244]

$$\langle \mathcal{O} \rangle = \underbrace{\langle \mathcal{O}_{LP,N} \rangle}_{\text{cheap}} + \underbrace{\langle \mathcal{O} \rangle - \langle \mathcal{O}_{LP,1} \rangle}_{\text{expensive}}$$

The contribution of the bias correction $\langle \mathcal{O} \rangle - \langle \mathcal{O}_{LP,1} \rangle$ to the variance is small if

$$1 - \operatorname{Corr}(\mathcal{O}, \mathcal{O}_{\mathsf{LP}, 1}) \ll \frac{N}{2} \qquad \Longrightarrow \qquad \text{tune } N_{\text{iter}}$$

Two-state fit

$$G_{\chi}^{\text{eff}}(t, t_{s}, Q^{2}) = \widehat{G_{\chi}}(Q^{2}) + c_{1,\chi}(Q^{2})e^{-\Delta t} + c_{2,\chi}(Q^{2})e^{-\Delta'(t_{s}-t_{s})}$$

Two-state fit

$$G_{\chi}^{\text{eff}}(t, t_s, Q^2) = \widehat{G_{\chi}}(Q^2) + c_{1,\chi}(Q^2)e^{-\Delta t} + c_{2,\chi}(Q^2)e^{-\Delta'(t_s - t)}$$

Iwo-state fit

$$G_{\chi}^{\text{eff}}(t, t_s, Q^2) = \widehat{G_{\chi}}(Q^2) + c_{1,\chi}(Q^2)e^{-\Delta t} + c_{2,\chi}(Q^2)e^{-\Delta'(t_s - t)}$$

Two-state fit

$$G_{\chi}^{\text{eff}}(t, t_s, Q^2) = \widehat{G_{\chi}}(Q^2) + c_{1,\chi}(Q^2)e^{-\Delta t} + c_{2,\chi}(Q^2)e^{-\Delta'(t_s - t)}$$

Two-state fit

$$G_{\chi}^{\text{eff}}(t, t_s, Q^2) = \widehat{G_{\chi}}(Q^2) + c_{1,\chi}(Q^2)e^{-\Delta t} + c_{2,\chi}(Q^2)e^{-\Delta'(t_s - t)}$$

lwo-state fit

$$G_{\chi}^{\text{eff}}(t, t_s, Q^2) = \widehat{G_{\chi}}(Q^2) + c_{1,\chi}(Q^2)e^{-\Delta t} + c_{2,\chi}(Q^2)e^{-\Delta'(t_s - t)}$$

Asymptotic matrix elements 2: Summation method

Summed operator insertions method

$$S_{\chi}(t_s;Q^2)/a \equiv \sum_{t=a}^{t_s-a} G_{\chi}^{\text{eff}}(t,t_s;Q^2) = c_{\chi}(Q^2) + t_s \widehat{G_{\chi}}(Q^2)$$

 $\widehat{G_X}$ has $O(e^{-\Delta t_s})$ corrections

Asymptotic matrix elements 2: Summation method

Summed operator insertions method

$$S_{\chi}(t_{s};Q^{2})/a \equiv \sum_{t=a}^{t_{s}-a} G_{\chi}^{\text{eff}}(t,t_{s};Q^{2}) = c_{\chi}(Q^{2}) + t_{s}\widehat{G_{\chi}}(Q^{2})$$

 $\widehat{G_X}$ has $O(e^{-\Delta t_s})$ corrections

Many two-particle states

• Finite-volume $N\pi$ levels are close to non-interacting for typical parameters

[Hansen, Fri. 14.20]

- Although $E_{N\pi} > E_{N\pi\pi}$, amplitudes enhanced by L^3
- LO ChPT analysis predicts $\langle N|A_{\mu}|N(\mathbf{p})\pi(-\mathbf{p})\rangle$ slowly varying with k

[Bär. 1606.09385]

• Ansatz: two-parameter fit by summing contributions of first $\mathcal{N} N\pi$ levels

Many two-particle states

• Finite-volume $N\pi$ levels are close to non-interacting for typical parameters

[Hansen, Fri. 14.20]

- Although $E_{N\pi} > E_{N\pi\pi}$, amplitudes enhanced by L^3
- LO ChPT analysis predicts $\langle N|A_{\mu}|N(p)\pi(-p)\rangle$ slowly varying with k

[Bär, 1606.09385]

• Ansatz: two-parameter fit by summing contributions of first \mathcal{N} $N\pi$ levels

Many two-particle states

• Finite-volume $N\pi$ levels are close to non-interacting for typical parameters

[Hansen, Fri. 14.20]

- Although $E_{N\pi} > E_{N\pi\pi}$, amplitudes enhanced by L^3
- LO ChPT analysis predicts $\langle N|A_{\mu}|N(p)\pi(-p)\rangle$ slowly varying with k

[Bär, 1606.09385]

• Ansatz: two-parameter fit by summing contributions of first \mathcal{N} $N\pi$ levels

Many two-particle states

• Finite-volume $N\pi$ levels are close to non-interacting for typical parameters

[Hansen, Fri. 14.20]

- Although $E_{N\pi} > E_{N\pi\pi}$, amplitudes enhanced by L^3
- LO ChPT analysis predicts $\langle N|A_{\mu}|N(p)\pi(-p)\rangle$ slowly varying with k

[Bär, 1606.09385]

• Ansatz: two-parameter fit by summing contributions of first \mathcal{N} $N\pi$ levels

Many two-particle states

• Finite-volume $N\pi$ levels are close to non-interacting for typical parameters

[Hansen, Fri. 14.20]

- Although $E_{N\pi} > E_{N\pi\pi}$, amplitudes enhanced by L^3
- LO ChPT analysis predicts $\langle N|A_{\mu}|N(p)\pi(-p)\rangle$ slowly varying with k

[Bär, 1606.09385]

• Ansatz: two-parameter fit by summing contributions of first \mathcal{N} $N\pi$ levels

Many two-particle states

• Finite-volume $N\pi$ levels are close to non-interacting for typical parameters

[Hansen, Fri. 14.20]

- Although $E_{N\pi} > E_{N\pi\pi}$, amplitudes enhanced by L^3
- LO ChPT analysis predicts $\langle N|A_{\mu}|N(p)\pi(-p)\rangle$ slowly varying with k

[Bär, 1606.09385]

• Ansatz: two-parameter fit by summing contributions of first $\mathcal{N} N\pi$ levels

Many two-particle states

• Finite-volume $N\pi$ levels are close to non-interacting for typical parameters

[Hansen, Fri. 14.20]

- Although $E_{N\pi} > E_{N\pi\pi}$, amplitudes enhanced by L^3
- LO ChPT analysis predicts $\langle N|A_{\mu}|N(p)\pi(-p)\rangle$ slowly varying with k

[Bär, 1606.09385]

• Ansatz: two-parameter fit by summing contributions of first \mathcal{N} $N\pi$ levels

g_A summary

- Too narrow a range of t_s to constrain summation method
- Excited state systematics need to be quantified

CLS $N_{\rm f} = 2 + 1$ nucleon structure

Asymptotic matrix elements: Two-state method

CLS $N_{\rm f} = 2 + 1$ nucleon structure

Asymptotic matrix elements: Two-state method

CLS $N_{\rm f} = 2 + 1$ nucleon structure

• Dipole ansatz

$$F_{\chi}(Q^2) = \frac{\widehat{F_{\chi}}(0)}{1 + Q^2 / \widehat{M_{\chi}}^2} \qquad \widehat{r_{\chi}}^2 = \frac{12}{\widehat{M_{\chi}}^2} \qquad \triangle$$

z-expansion

$$F_{\chi}(Q^2) = \sum_{n=1}^{n_{\text{max}}} a_n z(Q^2)^n \qquad z(Q^2) = \frac{\sqrt{4m_{\pi}^2 + Q^2 - 2m_{\pi}}}{\sqrt{4m_{\pi}^2 + Q^2 + 2m_{\pi}}}$$

CLS N_f = 2+1 nucleon structure 12 / 14

• Dipole ansatz

$$F_{\chi}(Q^2) = \frac{\widehat{F_{\chi}}(0)}{1 + Q^2 / \widehat{M_{\chi}}^2} \qquad \widehat{r_{\chi}}^2 = \frac{12}{\widehat{M_{\chi}}^2} \qquad \triangle$$

• z-expansion

$$F_{\chi}(Q^2) = \sum_{n=1}^{n_{\text{max}}} a_n z(Q^2)^n \qquad z(Q^2) = \frac{\sqrt{4m_{\pi}^2 + Q^2 - 2m_{\pi}}}{\sqrt{4m_{\pi}^2 + Q^2} + 2m_{\pi}}$$

• Dipole ansatz

$$F_{\chi}(Q^2) = \frac{\widehat{F_{\chi}}(0)}{1 + Q^2 / \widehat{M_{\chi}}^2} \qquad \widehat{r_{\chi}}^2 = \frac{12}{\widehat{M_{\chi}}^2} \qquad \triangle$$

z-expansion

$$F_{\chi}(Q^2) = \sum_{n=1}^{n_{\text{max}}} a_n z(Q^2)^n \qquad z(Q^2) = \frac{\sqrt{4m_{\pi}^2 + Q^2 - 2m_{\pi}}}{\sqrt{4m_{\pi}^2 + Q^2 + 2m_{\pi}}}$$

[Hill, 1008.4619]

• Dipole ansatz

$$F_{\chi}(Q^2) = \frac{\widehat{F_{\chi}}(0)}{1 + Q^2 / \widehat{M_{\chi}}^2} \qquad \widehat{r_{\chi}}^2 = \frac{12}{\widehat{M_{\chi}}^2} \qquad \triangle$$

z-expansion

$$F_{\chi}(Q^2) = \sum_{n=1}^{n_{\max}} a_n z(Q^2)^n \qquad z(Q^2) = \frac{\sqrt{4m_{\pi}^2 + Q^2 - 2m_{\pi}}}{\sqrt{4m_{\pi}^2 + Q^2 + 2m_{\pi}}}$$

[Hill, 1008.4619]

• Dipole ansatz

$$F_{\chi}(Q^2) = \frac{\widehat{F_{\chi}}(0)}{1 + Q^2 / \widehat{M_{\chi}}^2} \qquad \widehat{r_{\chi}}^2 = \frac{12}{\widehat{M_{\chi}}^2} \qquad \triangle$$

z-expansion

$$F_{\chi}(Q^2) = \sum_{n=1}^{n_{\text{max}}} a_n z(Q^2)^n \qquad z(Q^2) = \frac{\sqrt{4m_{\pi}^2 + Q^2 - 2m_{\pi}}}{\sqrt{4m_{\pi}^2 + Q^2} + 2m_{\pi}}$$

[Hill, 1008.4619]

• Dipole ansatz

$$F_{\chi}(Q^2) = \frac{\widehat{F_{\chi}}(0)}{1 + Q^2 / \widehat{M_{\chi}}^2} \qquad \widehat{r_{\chi}}^2 = \frac{12}{\widehat{M_{\chi}}^2} \qquad \triangle$$

z-expansion

$$F_{\chi}(Q^2) = \sum_{n=1}^{n_{\text{max}}} a_n z(Q^2)^n \qquad z(Q^2) = \frac{\sqrt{4m_{\pi}^2 + Q^2 - 2m_{\pi}}}{\sqrt{4m_{\pi}^2 + Q^2 + 2m_{\pi}}}$$

[Hill, 1008.4619]

r_E and r_M summary

CLS $N_{\rm f} = 2 + 1$ nucleon structure

13 / 14

Outlook

Ongoing work

- Quantify systematics due to excited-state contamination
- Full O(a)-improvement
- Extrapolation to the physical point
- Other couplings g_S and g_T

Future work

• Application of many new technologies exhibited at this conference