A first look at Staggered Domain Wall Fermions

Christian Hoelbling, Christian Zielinski

Bergische Universität Wuppertal NTU Singapore

Lattice 2016, University of Southampton, Jul. 25th, 2016

(PRD94, 014501 (2016))

Christian Hoelbling (Wuppertal)

Introduction

Lattice fermions

Introduction

Lattice fermions

Introduction

Staggered Wilson term construction

(Golterman, Smit, 1984; Adams, 2010; C.H. 2010; deForcrand et.al. 2010,2012; Durr 2012)

$$A^{\mu_1...\mu_{2n}} = i^n \eta_{\mu_1} \dots \eta_{\mu_{2n}} \Gamma_{\mu_1...\mu_{2n}} (C_{\mu_1} \dots C_{\mu_{2n}})_{sym}$$

•
$$\{D_{st}, \epsilon\} = 0$$
 and $D_{st}^{\dagger} = -D_{st}$

- Mass term: $[\mathbf{A}, \epsilon] = \mathbf{0}, \, \mathbf{A}^{\dagger} = \mathbf{A}$
- $\rightarrow D_{\mathsf{A}}\epsilon = \epsilon D_{\mathsf{A}}^{\dagger}$
- → $\lambda_i = \lambda_{i^*}^*$, real determinant

$$egin{aligned} \mathcal{C}_{\mu} &:= rac{1}{2} \left(V_{\mu} + V_{\mu}^{\dagger}
ight) \ (V_{\mu})_{xy} &:= U_{\mu}(x) \delta_{x+\hat{\mu},y} \end{aligned}$$

•
$$\Gamma_{\mu_{1}...\mu_{2n}} = \epsilon_{\mu_{1}...\mu_{2n}} (-1)^{\sum_{i} x_{\mu_{i}}}$$

 $\sim (\gamma_{\mu_{1}} \dots \gamma_{\mu_{2n}} \otimes \xi_{\mu_{1}} \dots \xi_{\mu_{2n}})$
• $\eta_{\mu} = (-1)^{\sum_{\nu < \mu} x_{\nu}} \sim (\gamma_{\mu} \otimes 1)$
• $\epsilon = (-1)^{\sum_{\mu} x_{\mu}} \sim (\gamma_{5} \otimes \xi_{5})$
• $\{C_{\mu}, \epsilon\} = 0$
• $A^{\mu_{1}...\mu_{2n}} \sim (1 \otimes \xi_{\mu_{1}} \dots \xi_{\mu_{2n}}) + O(a)$

Domain wall operator (Kaplan 1992; Shamir 1993; Furman, Shamir 1994)

$$\bar{\Psi} D_{\mathsf{DW}} \Psi = \sum_{s=1}^{N_s} \bar{\Psi}_s \left(D_W^+ \Psi_s - P_- \Psi_{s+1} - P_+ \Psi_{s+1} \right)$$

with $P_{\pm} = \frac{1}{2}(1 \pm \gamma_5), D_W^{\pm} = D_W(-M_0) \pm 1$

Boundary conditions with mass term:

$$P_{+} (\Psi_{0} + m\Psi_{N_{s}}) = 0 \qquad P_{-} (\Psi_{N_{s}+1} + m\Psi_{1}) = 0$$

modification (Boriçi, 1999) Optimal DWF (Chiu, 2002)

$$\mathcal{P}_{\pm}\Psi_{m{s}\mp1}
ightarrow - \mathcal{D}_W^-\mathcal{P}_{\pm}\Psi_{m{s}\mp1}$$

- $D_W^{\pm}
 ightarrow D_W^{\pm}(s) = \omega_s D_W(-M_0) \pm 1$
 - Staggered versions (Adams, 2011) $D_W \rightarrow D_A$ $\gamma_5 \rightarrow \epsilon \sim (\gamma_5 \otimes \xi_5)$

Borici's

Domain wall operator (Kaplan 1992; Shamir 1993; Furman, Shamir 1994)

$$\bar{\Psi} \mathcal{D}_{\mathsf{DW}} \Psi = \sum_{s=1}^{N_s} \bar{\Psi}_s \left(\mathcal{D}_W^+ \Psi_s - \mathcal{P}_- \Psi_{s+1} - \mathcal{P}_+ \Psi_{s+1} \right)$$

with $P_{\pm} = \frac{1}{2}(1 \pm \gamma_5), D_W^{\pm} = D_W(-M_0) \pm 1$

• Boundary conditions with mass term:

$$P_{+}(\Psi_{0} + m\Psi_{N_{s}}) = 0 \qquad P_{-}(\Psi_{N_{s}+1} + m\Psi_{1}) = 0$$

Boriçi's modification (Boriçi, 1999) Optimal DWF (Chiu, 2002)

$$\mathcal{P}_{\pm}\Psi_{m{s}\mp1}
ightarrow -\mathcal{D}_W^-\mathcal{P}_{\pm}\Psi_{m{s}\mp1}$$

$$D_W^{\pm} \rightarrow D_W^{\pm}(s) = \omega_s D_W(-M_0) \pm 1$$

Domain wall operator (Kaplan 1992; Shamir 1993; Furman, Shamir 1994)

$$\bar{\Psi} D_{\mathsf{DW}} \Psi = \sum_{s=1}^{N_s} \bar{\Psi}_s \left(D_W^+ \Psi_s - P_- \Psi_{s+1} - P_+ \Psi_{s+1} \right)$$

with $P_{\pm} = \frac{1}{2}(1 \pm \gamma_5), D_W^{\pm} = D_W(-M_0) \pm 1$

Boundary conditions with mass term:

$$P_{+}(\Psi_{0} + m\Psi_{N_{s}}) = 0 \qquad P_{-}(\Psi_{N_{s}+1} + m\Psi_{1}) = 0$$

Boriçi's modification (Boriçi, 1999) Optimal DWF (Chiu, 2002)

$$P_{\pm}\Psi_{s\mp1} \rightarrow -D_W^-P_{\pm}\Psi_{s\mp1}$$

Domain wall operator (Kaplan 1992; Shamir 1993; Furman, Shamir 1994)

$$\bar{\Psi} D_{\mathsf{DW}} \Psi = \sum_{s=1}^{N_s} \bar{\Psi}_s \left(D_W^+ \Psi_s - P_- \Psi_{s+1} - P_+ \Psi_{s+1} \right)$$

with $P_{\pm} = \frac{1}{2}(1 \pm \gamma_5), D_W^{\pm} = D_W(-M_0) \pm 1$

Boundary conditions with mass term:

$$P_{+}(\Psi_{0} + m\Psi_{N_{s}}) = 0 \qquad P_{-}(\Psi_{N_{s}+1} + m\Psi_{1}) = 0$$

Boriçi's modification (Boriçi, 1999) Optimal DWF (Chiu, 2002)

$$\mathcal{P}_{\pm}\Psi_{m{s}\mp1}
ightarrow -\mathcal{D}_W^-\mathcal{P}_{\pm}\Psi_{m{s}\mp1}$$

• Domain wall operator (Kaplan 1992; Shamir 1993; Furman, Shamir 1994)

$$\bar{\Psi} D_{\mathsf{DW}} \Psi = \sum_{s=1}^{N_s} \bar{\Psi}_s \left(D_W^+ \Psi_s - P_- \Psi_{s+1} - P_+ \Psi_{s+1} \right)$$

with $P_{\pm} = \frac{1}{2}(1 \pm \gamma_5), D_W^{\pm} = D_W(-M_0) \pm 1$

Boundary conditions with mass term:

$$P_{+}(\Psi_{0} + m\Psi_{N_{s}}) = 0 \qquad P_{-}(\Psi_{N_{s}+1} + m\Psi_{1}) = 0$$

Boriçi's modification (Boriçi, 1999) Optimal DWF (Chiu, 2002)

$$P_{\pm}\Psi_{s\mp1}
ightarrow - D_W^- P_{\pm}\Psi_{s\mp1}$$

$$D_W^{\pm}
ightarrow D_W^{\pm}(s) = \omega_s D_W(-M_0) \pm 1$$

• Domain wall operator (Kaplan 1992; Shamir 1993; Furman, Shamir 1994)

$$\bar{\Psi}D_{\mathsf{DW}}\Psi = \sum_{s=1}^{N_s} \bar{\Psi}_s \left(D_{\mathsf{W}}^+ \Psi_s - P_- \Psi_{s+1} - P_+ \Psi_{s+1} \right)$$

with $P_{\pm} = \frac{1}{2}(1 \pm \gamma_5), D_W^{\pm} = D_W(-M_0) \pm 1$

• Boundary conditions with mass term:

$$P_{+}(\Psi_{0} + m\Psi_{N_{s}}) = 0 \qquad P_{-}(\Psi_{N_{s}+1} + m\Psi_{1}) = 0$$

Boriçi's modification (Boriçi, 1999) Optimal DWF (Chiu, 2002)

$$\mathcal{P}_{\pm}\Psi_{m{s}\mp1}
ightarrow - \mathcal{D}_W^-\mathcal{P}_{\pm}\Psi_{m{s}\mp1}$$

$$D_W^{\pm}
ightarrow D_W^{\pm}(s) = \omega_s D_W(-M_0) \pm 1$$

Domain wall operator (Kaplan 1992; Shamir 1993; Furman, Shamir 1994)

$$\bar{\Psi} \mathcal{D}_{\mathsf{DW}} \Psi = \sum_{s=1}^{N_s} \bar{\Psi}_s \left(\mathcal{D}_W^+ \Psi_s - \mathcal{P}_- \Psi_{s+1} - \mathcal{P}_+ \Psi_{s+1} \right)$$

with $P_{\pm} = \frac{1}{2}(1 \pm \gamma_5), D_W^{\pm} = D_W(-M_0) \pm 1$

Boundary conditions with mass term:

$$P_{+} (\Psi_{0} + m\Psi_{N_{s}}) = 0 \qquad P_{-} (\Psi_{N_{s}+1} + m\Psi_{1}) = 0$$
i's modification (Boriçi, 1999) Optimal DWF (Chiu, 2002)

$$\mathcal{P}_{\pm}\Psi_{m{s}\mp1}
ightarrow -\mathcal{D}_W^-\mathcal{P}_{\pm}\Psi_{m{s}\mp1}$$

- $D_W^{\pm}
 ightarrow D_W^{\pm}(s) = \omega_s D_W(-M_0) \pm 1$
 - Staggered versions (Adams, 2011) $D_W \rightarrow D_A$ $\gamma_5 \rightarrow \epsilon \sim (\gamma_5 \otimes \xi_5)$

Boric

Numerical setup

- Schwinger model (QED₂)
- Wilson gauge action
- Unsmeared and 3-APE ($\alpha = 0.5$)

β	$N_x \times N_t$	#conf
0.8	8 × 8	1000
1.8	12×12	1000
3.2	16 imes 16	1000
5	20 imes 20	1000
7.2	24 imes 24	1000
9.8	28 imes 28	1000
12.8	32 imes 32	1000

Observables:

- Normality violation $\Delta_N = ||[D, D^{\dagger}]||$
- GW violation $\Delta_{GW} = ||\gamma_5 D D\hat{\gamma}_5||$
- Residual mass $m_{\rm eff} = |\lambda_{\rm min}|$

Christian Hoelbling (Wuppertal)

Staggered Domain Wall Fermions

Wilson kernel

Staggered Wilson kernel

Christian Hoelbling (Wuppertal)

Bulk operators

Wilson kernel

Staggered Wilson kernel

Christian Hoelbling (Wuppertal)

Wilson kernel

Staggered Wilson kernel

Wilson kernel

Staggered Wilson kernel

10/14

Continuum behaviour

Smeared continuum behaviour

Christian Hoelbling (Wuppertal)

Why the good chiral properties?

QCD outlook

QCD, $6^4 \times 8$, $\beta = 6$, APE smeared

Christian Hoelbling (Wuppertal)

Staggered Domain Wall Fermions

Jul. 25th, 2016 13 / 14

QCD outlook

QCD, $6^4 \times 8$, $\beta = 6$, APE smeared

Christian Hoelbling (Wuppertal)

Summary

Could staggered DWF be useful?

- ✓ Construction is straightforward
- ✓ Good chiral symmetry properties
- Easily parallelizable

- Counterterms for N_f = 1 (Sharpe 2012)
- X Staggered spin structure

Christian Hoelbling (Wuppertal)

Staggered Domain Wall Fermions

Jul. 25th, 2016 14 / 14