New polynomially exact integration rules on $U(N)$ and $S U(N)$

Tobias Hartung

King's College London

In collaboration with
A. Ammon***, K. Jansen*, H. Leövey**, and J. Volmer*.

$$
2016-07-25
$$

NIC, DESY Zeuthen, ${ }^{ *}$ Humboldt University Berlin, ${ }^{* * *}$ IVU Traffic Technologies AG

We consider the $0+1$ dimensional QCD with chemical potential.
Dirac operator for a quark of mass m at chemical potential μ :

$$
\mathfrak{D}(U)=\left(\begin{array}{ccccc}
m & \frac{e^{\mu}}{2} U_{1} & & & \frac{e^{-\mu}}{2} U_{n}^{*} \\
-\frac{e^{-\mu}}{2} U_{1}^{*} & m & \frac{e^{\mu}}{2} U_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & -\frac{e^{-\mu}}{2} U_{n-2}^{*} & m & \frac{e^{-\mu}}{2} U_{n-1} \\
-\frac{e^{\mu}}{2} U_{n} & & & -\frac{e^{-\mu}}{2} U_{n-1}^{*} & m
\end{array}\right)
$$

N_{f} flavor partition function:

$$
Z(m, \mu, G, n)=\int_{G^{n}} \operatorname{det} \mathfrak{D}(U)^{N_{f}} d h_{G}^{n}(U)
$$

with $G \in\{S U(N), U(N)\}$ and h_{G} the (normalized) Haar measure on G.

Choice of Gauge: $U_{j}=1$ except $U=U_{n}$. Then,

$$
\operatorname{det} \mathfrak{D}=\operatorname{det}\left(\prod_{j=1}^{n} \tilde{m}_{j}+2^{-n} e^{-n \mu} U^{*}+(-1)^{n} 2^{-n} e^{n \mu} U\right)
$$

with $\tilde{m}_{1}:=m$,

$$
\forall j \in[2, n-1] \cap \mathbb{N}: \quad \tilde{m}_{j}:=m+\frac{1}{4 \tilde{m}_{j-1}},
$$

and

$$
\tilde{m}_{n}:=m+\frac{1}{4 \tilde{m}_{n-1}}+\sum_{j=1}^{n-1} \frac{(-1)^{j+1} 2^{-2 j}}{\tilde{m}_{j} \prod_{k=1}^{j-1} \tilde{m}_{k}^{2}}
$$

$0+1$ dimensional QCD for a quark at non-zero chemical potential

$$
\int_{G} \operatorname{det}\left(\prod_{j=1}^{n} \tilde{m}_{j}+2^{-n} e^{-n \mu} U^{*}+(-1)^{n} 2^{-n} e^{n \mu} U\right)^{N_{f}} d h_{G}(U)
$$

is a highly oscillating integral.

$$
\int_{G} \operatorname{det}\left(\prod_{j=1}^{n} \tilde{m}_{j}+2^{-n} e^{-n \mu} U^{*}+(-1)^{n} 2^{-n} e^{n \mu} U\right)^{N_{f}} d h_{G}(U)
$$

is a highly oscillating integral.
sign problem

The sign problem is very problematic for m small and $n \mu$ large.

Markov Chain Monte Carlo is unfeasible!

$$
\int_{G} \operatorname{det}\left(\prod_{j=1}^{n} \tilde{m}_{j}+2^{-n} e^{-n \mu} U^{*}+(-1)^{n} 2^{-n} e^{n \mu} U\right)^{N_{f}} d h_{G}(U)
$$

is a highly oscillating integral.
sign problem

The sign problem is very problematic for m small and $n \mu$ large.

Markov Chain Monte Carlo is unfeasible!

Idea

Use polynomially exact quadrature rules over $U(N), S U(N)$.

We will consider ($N_{f}=1$)

$$
Z(m, \mu, G, n)=\int_{G} \operatorname{det} \mathfrak{D} d h_{G}
$$

and the chiral condensate

$$
\partial_{m} \ln Z(m, \mu, G, n)=\frac{\int_{G} \partial_{m} \operatorname{det} \mathfrak{D} d h_{G}}{\int_{G} \operatorname{det} \mathfrak{D} d h_{G}}
$$

with

$$
\operatorname{det} \mathfrak{D}=\operatorname{det}\left(\prod_{j=1}^{n} \tilde{m}_{j}+2^{-n} e^{-n \mu} U^{*}+(-1)^{n} 2^{-n} e^{n \mu} U\right)
$$

Solution: Symmetrization?

Bloch, Bruckmann, Wettig (2013)

Center Symmetry of $S U(3)$: Choosing quadrature rules Q satisfying

$$
\forall U \in Q: U^{*}, e^{\frac{2 \pi i}{3}} U, e^{\frac{4 \pi i}{3}} U \in Q
$$

works well for $N_{f} \leq 5$ (but still needs Monte Carlo).

Solution: Symmetrization? Complete Symmetrization!

Bloch, Bruckmann, Wettig (2013)

Center Symmetry of $S U(3)$: Choosing quadrature rules Q satisfying

$$
\forall U \in Q: U^{*}, e^{\frac{2 \pi i}{3}} U, e^{\frac{4 \pi i}{3}} U \in Q
$$

works well for $N_{f} \leq 5$ (but still needs Monte Carlo).
Can we construct polynomially exact quadrature rules?

We want completely symmetric quadrature rules.

- $U(N) \cong S U(N) \rtimes U(1)$ and $h_{U(N)}=h_{S U(N)} \times h_{U(1)}$ where \rtimes denotes the semidirect product and h the normalized Haar measure.
- $U(N) \cong S U(N) \rtimes U(1)$ and $h_{U(N)}=h_{S U(N)} \times h_{U(1)}$ where \rtimes denotes the semidirect product and h the normalized Haar measure.
- $\left\{e^{\frac{2 \pi i k}{t+1}+\varphi_{0}} ; k \in\{0, \ldots, t\}\right\} \subseteq U(1)$ integrates all polynomials of degree $\leq t$ exactly (φ_{0} arbitrary).
- $U(N) \cong S U(N) \rtimes U(1)$ and $h_{U(N)}=h_{S U(N)} \times h_{U(1)}$ where \rtimes denotes the semidirect product and h the normalized Haar measure.
- $\left\{e^{\frac{2 \pi i k}{t+1}+\varphi_{0}} ; k \in\{0, \ldots, t\}\right\} \subseteq U(1)$ integrates all polynomials of degree $\leq t$ exactly (φ_{0} arbitrary).
- $S U(2) \cong S^{3}$
- $U(N) \cong S U(N) \rtimes U(1)$ and $h_{U(N)}=h_{S U(N)} \times h_{U(1)}$ where \rtimes denotes the semidirect product and h the normalized Haar measure.
- $\left\{e^{\frac{2 \pi i k}{t+1}+\varphi_{0}} ; k \in\{0, \ldots, t\}\right\} \subseteq U(1)$ integrates all polynomials of degree $\leq t$ exactly (φ_{0} arbitrary).
- $S U(2) \cong S^{3}$
- $S U(N)$ is a principal $S U(N-1)$ bundle over $S^{2 N-1}$
- $U(N) \cong S U(N) \rtimes U(1)$ and $h_{U(N)}=h_{S U(N)} \times h_{U(1)}$ where \rtimes denotes the semidirect product and h the normalized Haar measure.
- $\left\{e^{\frac{2 \pi i k}{t+1}+\varphi_{0}} ; k \in\{0, \ldots, t\}\right\} \subseteq U(1)$ integrates all polynomials of degree $\leq t$ exactly (φ_{0} arbitrary).
- $S U(2) \cong S^{3}$
- $S U(N)$ is a principal $S U(N-1)$ bundle over $S^{2 N-1}$
- $S U(N) \cong \times_{j=1}^{N-1} S^{2 j+1}$ and $h_{S U(N)}=\times_{j=1}^{N-1} \frac{\operatorname{vol}_{S^{2 j+1}}}{\operatorname{vol}_{S^{2 j+1}}\left(S^{2 j+1}\right)}$ where ${ }^{\mathrm{vol}_{S^{2 j+1}}}$ is the measure defined by the Riemannian volume form of $S^{2 j+1}$.
- $U(N) \cong S U(N) \rtimes U(1)$ and $h_{U(N)}=h_{S U(N)} \times h_{U(1)}$ where \rtimes denotes the semidirect product and h the normalized Haar measure.
- $\left\{e^{\frac{2 \pi i k}{t+1}+\varphi_{0}} ; k \in\{0, \ldots, t\}\right\} \subseteq U(1)$ integrates all polynomials of degree $\leq t$ exactly (φ_{0} arbitrary).
- $S U(2) \cong S^{3}$
- $S U(N)$ is a principal $S U(N-1)$ bundle over $S^{2 N-1}$
- $S U(N) \cong \times_{j=1}^{N-1} S^{2 j+1}$ and $h_{S U(N)}=\times_{j=1}^{N-1} \frac{\operatorname{vol}_{S^{2 j+1}}}{\operatorname{vol}_{S^{2 j+1}}\left(S^{2 j+1}\right)}$ where ${ }^{\mathrm{vol}_{S^{2 j+1}}}$ is the measure defined by the Riemannian volume form of $S^{2 j+1}$.
- polynomials in $S U(N)$ of degree $\leq k$ are mapped to "unitary polynomials" of degree $\leq k$ in $\times_{j=1}^{N-1} S^{2 j+1}$

Genz (2003)

(Randomized) Completely symmetric (and thus polynomially exact) quadrature rules on spheres S^{n} can be constructed explicitly.
computing the partition function $Z(m, \mu, G, n)=\int_{G} \operatorname{det} \mathfrak{D} d h_{G}$ $\operatorname{det} \mathfrak{D}(U)=\operatorname{det}\left(\prod_{j=1}^{n} \tilde{m}_{j}+2^{-n} e^{-n \mu} U^{*}+(-1)^{n} 2^{-n} e^{n \mu} U\right)$

computing the partition function $Z(m, \mu, G, n)=\int_{G} \operatorname{det} \mathfrak{D} d h_{G}$

Note that the symmetrized (polynomially exact) quadrature rule yields double precision results for all values of m.
computing the partition function $Z(m, \mu, G, n)=\int_{G} \operatorname{det} \mathfrak{D} d h_{G}$
$n=20, \mu=1.0, U(3)$, number sequences $=10,1024$ bit ext. floats

computing the chiral condensate $\partial_{m} \ln Z(m, \mu, G, n)=\partial_{m} Z / Z=\int_{G} \partial_{m} \operatorname{det} \mathfrak{D} d h_{G} / \int_{G} \operatorname{det} \mathfrak{D} d h_{G}$

computing the chiral condensate $\partial_{m} \ln Z(m, \mu, G, n)=\partial_{m} Z / Z=\int_{G} \partial_{m} \operatorname{det} \mathfrak{D} d h_{G} / \int_{G} \operatorname{det} \mathfrak{D} d h_{G}$
$n=8, \mu=1.0$, number of sequences $=50, U(2)$

Conclusion

- Given a quadrature rule that integrates "unitary polynomials" on the sphere exactly, we can construct polynomially exact rules on $S U(N)$ and $U(N)$.

Conclusion

- Given a quadrature rule that integrates "unitary polynomials" on the sphere exactly, we can construct polynomially exact rules on $S U(N)$ and $U(N)$.
- Purely non-probabilistic integration (provided the spherical rules are not).

Conclusion

- Given a quadrature rule that integrates "unitary polynomials" on the sphere exactly, we can construct polynomially exact rules on $S U(N)$ and $U(N)$.
- Purely non-probabilistic integration (provided the spherical rules are not).
- Number of integration points is a priori known (depends only on the group $(S) U(N)$ and the polynomial degree of the integrand).

Conclusion

- Given a quadrature rule that integrates "unitary polynomials" on the sphere exactly, we can construct polynomially exact rules on $S U(N)$ and $U(N)$.
- Purely non-probabilistic integration (provided the spherical rules are not).
- Number of integration points is a priori known (depends only on the group $(S) U(N)$ and the polynomial degree of the integrand).
- Higher dimensional applications that do not scale exponentially with the dimension are currently under investigation.

Conclusion

- Given a quadrature rule that integrates "unitary polynomials" on the sphere exactly, we can construct polynomially exact rules on $S U(N)$ and $U(N)$.
- Purely non-probabilistic integration (provided the spherical rules are not).
- Number of integration points is a priori known (depends only on the group $(S) U(N)$ and the polynomial degree of the integrand).
- Higher dimensional applications that do not scale exponentially with the dimension are currently under investigation.
arXiv:1607.05027 [hep-lat]
$0+1$ dimensional QCD and Polynomially Exact Rules
Numerical Results

