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0+ 1 dimensional QCD for a quark at non-zero chemical potential
:

We consider the 0 + 1 dimensional QCD with chemical potential.
Dirac operator for a quark of mass m at chemical potential u:

et e Hrrx
m s = Un
S m 20,
D(U) =
et [l g
. 5 Un-2 _Mm 5 Un-1
e e *
~5Un S Ui m

Ny flavor partition function:

Z(m, 1, Gyn) = fGn det D(U)N7 dhi%(U)

with G € {SU(N),U(N)} and hg the (normalized) Haar
measure on G. G

LONDOI
:

New polynomially exact integration rules on U(N) and SU(N)

T. Hartung



0+ 1 dimensional QCD and Polynomially Exact Rules

Numerical Results
o] lele) [e]e]e}
000 00
; ;
0+ 1 dimensional QCD for a quark at non-zero chemical potential

Choice of Gauge: U; =1 except U = U,,. Then,

n
det® =det | [[m; + 27" ™U* + (-1)"27"e™U
j=1
with my :=m,

1

Viel2n-1|nN: m; =m+ ——
J [7” ] mj m 4ﬁlj_17

and

~ 1 n—-1 (_1)j+12—2j

M =Mt ————+ )
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ING'S

LON!I))”(!%

|
New polynomially exact integration rules on U(N) and SU(N) T. Hartung




0+ 1 dimensional QCD and Polynomially Exact Rules

Numerical Results
ooeo [e]e]e}
000 00
;
0+ 1 dimensional QCD for a quark at non-zero chemical potential

fG det [ [T, +27e™ U + (-1)"2"e"U | dha(U)
j=1

is a highly oscillating integral.
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0+ 1 dimensional QCD for a quark at non-zero chemical potential

Ny
n
/;1‘ det| [[m; +27 e ™U" + (-1)"27"e™U dha(U)
j=1
is a highly oscillating integral.
sign problem
The sign problem is very problematic for m small and nu large.

Markov Chain Monte Carlo is unfeasible!
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0+ 1 dimensional QCD for a quark at non-zero chemical potential

Ny
n
fG det [ [T, +27e™ U + (-1)"2"e"U | dha(U)
j=1
is a highly oscillating integral.
sign problem
The sign problem is very problematic for m small and nu large.
Markov Chain Monte Carlo is unfeasible!

Idea

Use polynomially exact quadrature rules over U(N), SU(N). .
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0+ 1 dimensional QCD for a quark at non-zero chemical potential

We will consider (Ny = 1)

Z(m, 1, G,n) = fG det D dhe
and the chiral condensate

i Om det D dhg
[ det® dhq

OmInZ(m,p,G,n) =

with
det® =det | [[m; +27"e™U" + (-1)"27""™U
j=1
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completely symmetric rules

Solution: Symmetrization?

Bloch, Bruckmann, Wettig (2013)

Center Symmetry of SU(3): Choosing quadrature rules @
satisfying

YU eQ: Ute 5 UesUeQ

works well for Ny <5 (but still needs Monte Carlo).
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completely symmetric rules

Solution: Symmetrization? Complete Symmetrization!

Bloch, Bruckmann, Wettig (2013)

Center Symmetry of SU(3): Choosing quadrature rules @
satisfying

YU eQ: Ute 5 UesUeQ
works well for Ny <5 (but still needs Monte Carlo).

Can we construct polynomially exact quadrature rules?

We want completely symmetric quadrature rules.
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completely symmetric rules

» U(N) 2 SU(N)»U(1) and hyy(ny = hsu(ny * hy(1y where =
denotes the semidirect product and h the normalized Haar
measure.
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completely symmetric rules

» U(N) 2 SU(N)»U(1) and hyy(ny = hsu(ny * hy(1y where =
denotes the semidirect product and h the normalized Haar
measure.

2mik

> {e 1 TR0 Lo {0,...,75}} c U(1) integrates all polynomials

of degree <t exactly (o arbitrary).
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completely symmetric rules

» U(N) 2 SU(N)»U(1) and hyy(ny = hsu(ny * hy(1y where =
denotes the semidirect product and h the normalized Haar
measure.

2mik

> {e 1 TR0 Lo {0,...,75}} c U(1) integrates all polynomials

of degree <t exactly (o arbitrary).
» SU(2) = 53
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completely symmetric rules

v

U(N) 2 SU(N)»U(1) and hyy(ny = hsu(ny * hy(1y where x
denotes the semidirect product and h the normalized Haar
measure.

2mik

{e 1 TR0 Lo {O,...,t}} c U(1) integrates all polynomials

v

of degree <t exactly (o arbitrary).
SU(2) = S3
SU(N) is a principal SU(N - 1) bundle over $2V-1

v

v
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completely symmetric rules

» U(N) 2 SU(N)»U(1) and hyy(ny = hsu(ny * hy(1y where =
denotes the semidirect product and h the normalized Haar

measure.
2mik

> {e 1 0 ke {O,...,t}} c U(1) integrates all polynomials
of degree <t exactly (o arbitrary).
» SU(2) = 53
» SU(N) is a principal SU(N - 1) bundle over S2V-!
_ 1 _ vol o2+
» SU(N) = Xj-vzll 5% and hgp oy = XN 52+

j=1 V0152j+1(52j+1)
where volgz;j+1 is the measure defined by the Riemannian

volume form of S%+1,
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completely symmetric rules

» U(N) 2 SU(N)»U(1) and hyy(ny = hsu(ny * hy(1y where =
denotes the semidirect product and h the normalized Haar

measure.
2mik

> {e w1 P00 ke {0,.. }} c U(1) integrates all polynomials
of degree <t exactly (300 arbitrary).
» SU(2) = 53
» SU(N) is a principal SU(N - 1) bundle over S2V-!
- j _ vol g2+
» SU(N) = X" % and hgy vy = X0 e

j=1 V0152j+1(s2j+1)
where volgz;j+1 is the measure defined by the Riemannian

volume form of S%+1,

» polynomials in SU(N) of degree < k are mapped to “unitary
polynomials” of degree < k in XN 1 g2j+1
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completely symmetric rules

Genz (2003)

(Randomized) Completely symmetric (and thus polynomially ex-
act) quadrature rules on spheres S™ can be constructed explicitly.
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computing the partition function Z(m,pu, G, n) = fG det® dhg

det D(U) = det (TT}; i +27"e ™U* + (~1)"27"e™U)

105" n=20,u=10

105 || & Z{m,p,U(3),n)

1ot L]+ 27" exp(3np)

e double prec

10%7
10"}
10°°

10" b

10|

107 B

10° 1

0" Mr‘/_ ]
107" -
102 10" 10° 10'
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computing the partition function Z(m,pu, G, n) = fG det® dhg

n=20, u=1.0, U(3), number sequences =50

1022 Tk A ul
4 not symmetrized
o
10%0 T symmetrized ]
10" 1 4
10" g

1ZcascutatedZanaticl [ Zanatgtic
2

108 . . . .
10° 107 10" 10° 10 10%
m

Note that the symmetrized (polynomially exact) quadrature
rule yields double precision results for all values of m. NG
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ooe
[e]e]

computing the partition function Z(m,pu, G, n) = fG det® dhg

10°

1021 |

10%

i

10%

12 atentatea— Zoanaipticl [ Z amayic

1027

105"

10285
10309

1077+
107 L
10757
1078 L
1073

n=20, p=1.0, U(3), number sequences =10, 1024bi

t ext. floats

k34 not symmetrized
++ symmetrized

107 107

10’

o e
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computing the chiral

condensate O In Z(m, u, G,n) = 0m Z|Z = [ Om det D dhg | [ detD dhg

10'®

1014

1D|2 [

10" |

10°
10°
10
10
10°
107

10"

6

n==8 nu=10

| a—a a, Z(m,pu,U(2)n)
[ e—e Z(m,pl2)n)

27 exp(2np)

10° 107 10° 10° 107 10° 107 107 10° 10’ ING'S
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computing the chiral condensate 9 In Z(m, u, G,n) = 0m Z/Z = [ Om det D dhg | [ detD dhg

n=8, p=1.0, numberofsequences 50 U(2)

10" 1
10% 1
10°7 1
10% 1
10—1(}3 [ |

10—125 [ ,
o4 || 44 not symmetrized 1

el 1 symmetrized |

101 L i
12 1

10-24' L ,

relative error of chiral condensate d,, InZ

107 | B

10—2&7_ i
1010 s S i P Yl T,
10" 10™ 10° 10® 107 10° 10° 10* 10° 107 10" 10° 10" 10° 10° INGS
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Conclusion

» Given a quadrature rule that integrates “unitary polynomi-
als” on the sphere exactly, we can construct polynomially
exact rules on SU(N) and U(N).
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: :
Conclusion

» Given a quadrature rule that integrates “unitary polynomi-
als” on the sphere exactly, we can construct polynomially
exact rules on SU(N) and U(N).

» Purely non-probabilistic integration (provided the spherical
rules are not).
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Conclusion

» Given a quadrature rule that integrates “unitary polynomi-
als” on the sphere exactly, we can construct polynomially
exact rules on SU(N) and U(N).

» Purely non-probabilistic integration (provided the spherical
rules are not).

» Number of integration points is a priori known (depends only
on the group (S)U(N) and the polynomial degree of the
integrand).

B
LONDOg\I

| |
New polynomially exact integration rules on U(N) and SU(N) T. Hartung




0+ 1 dimensional QCD and Polynomially Exact Rules Numerical Results

: :
Conclusion

» Given a quadrature rule that integrates “unitary polynomi-
als” on the sphere exactly, we can construct polynomially
exact rules on SU(N) and U(N).

» Purely non-probabilistic integration (provided the spherical
rules are not).

» Number of integration points is a priori known (depends only
on the group (S)U(N) and the polynomial degree of the
integrand).

» Higher dimensional applications that do not scale exponen-
tially with the dimension are currently under investigation.
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: :
Conclusion

» Given a quadrature rule that integrates “unitary polynomi-
als” on the sphere exactly, we can construct polynomially
exact rules on SU(N) and U(N).

» Purely non-probabilistic integration (provided the spherical
rules are not).

» Number of integration points is a priori known (depends only
on the group (S)U(N) and the polynomial degree of the
integrand).

» Higher dimensional applications that do not scale exponen-
tially with the dimension are currently under investigation.
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relative error of chiral condensate 9, InZ

10"

107 F

18

10" 10" 1

n=8, p=1.0, number of sequences =5, U(2)

4 not symmetrized
1 symmetrized
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