

Hadron Structure using the Feynman-Hellmann Theorem

Alexander Chambers The University of Adelaide QCDSF-UKQCD/CSSM Collaborations

Southampton July 25, 2016

Want to demonstrate a Feynman-Hellmann approach to calculating non-forward matrix elements

Particularly form factors of the nucleon and pion

Acknowledgements

- Ross Young (Adelaide)
- James Zanotti (Adelaide)
- Roger Horsley (Edinburgh)
- Paul Rakow (Liverpool)
- Yoshifumi Nakamura (Riken)
- Holger Perlt (Leipzig)
- Arwed Schiller (Leipzig)
- Dirk Pleiter (Jülich)
- Gerrit Schierholz (Hamburg)

Electromagnetic Form Factors

Hadrons are composite particles

How is charge/magnetisation distributed?

Need to determine vector matrix elements

$$\langle H(\mathbf{p}') | \mathcal{J}(0) | H(\mathbf{p}) \rangle = \dots?$$

Full analytic form unknown

Parameterise amplitude by form factors

e.g. pion has single form factor

$$ig\langle \, \pi(\mathbf{p}') \, ig| \, \mathcal{J}(0) \, ig| \, \pi(\mathbf{p}) \, ig
angle \propto F_{\pi}(Q^2), \quad Q^2 = -(p'-p)^2$$

- Fourier transform of transverse charge density
- Slope at $Q^2 = 0 \rightarrow$ charge radius

$$\langle H(\mathbf{p}') | \mathcal{J}(0) | H(\mathbf{p}) \rangle = \dots F(Q^2) + \dots \qquad Q^2 = (p'-p)^2$$

What can experiment tell us?

- Low Q^2 : π^+ scattering by atomic e^-
- High Q²: π electroproduction off nucleon
 High-Q² measurement difficult

Less high- Q^2 data \implies less fine-detail information

Ongoing experimental efforts

e.g. 12 GeV upgrade at JLab

$$H(\mathbf{p}') | \mathcal{J}(0) | H(\mathbf{p}) \rangle = \dots F(Q^2) + \dots \qquad Q^2 = (p' - p)^2$$

Write nucleon matrix element in terms of Sachs EM form factors

$$\langle N(\mathbf{p}') | \mathcal{J}(0) | N(\mathbf{p}) \rangle = \dots G_E(Q^2) + \dots G_M(Q^2)$$

Non-relavistically, Fourier Transforms of charge/magnetisation

For the proton

- Early experiments \rightarrow low G_E sensitivity
- Double polarisation $\rightarrow \frac{G_E}{G_M}$ directly

Zero crossing in $(G_E/G_M)_p$?

Central negatively charged region?

Require more high-Q² data

Can lattice help?

Electromagnetic Form Factors — Lattice

$$\langle H(\mathbf{p}') | \mathcal{J}(0) | H(\mathbf{p}) \rangle = \dots F(Q^2) + \dots \qquad Q^2 = (p'-p)^2$$

What can lattice tell us?

Low-Mid Q²: Good progress

Clean extraction of form factors

High Q²: **More Difficult**

What can a Feynman-Hellmann approach offer?

Feynman-Hellmann Recipe (Forward Case)

How to calculate $\langle H(\mathbf{p}) | \mathcal{O}(0) | H(\mathbf{p}) \rangle$?

1. Add term to Lagrangian

$$\mathcal{L}
ightarrow \mathcal{L} + \lambda \mathcal{O}$$

2. Measure hadron energy while changing $\boldsymbol{\lambda}$

$$G(\lambda;\mathbf{p};t) = \int \mathrm{d}x \, e^{-i\mathbf{p}\cdot\mathbf{x}} \langle \, \chi'(x)\chi(0) \, \rangle \stackrel{\text{large } t}{\propto} e^{-E_H(\lambda,\mathbf{p})t}$$

3. Calculate matrix element from energy shifts

$$\frac{\partial E_{H}(\lambda, \mathbf{p})}{\partial \lambda}\Big|_{\lambda=0} = \frac{1}{2E_{H}(\mathbf{p})} \langle H(\mathbf{p}) | \mathcal{O}(0) | H(\mathbf{p}) \rangle$$

Calculation of matrix element \rightarrow hadron spectroscopy Only need to calculate two-point functions!

Feynman-Hellmann Recipe (Forward Case)

 $\mathcal{L}
ightarrow \mathcal{L} + \lambda \mathcal{O}$

 $\left. \partial E_{H} / \partial \lambda \right|_{\lambda = 0} \propto \left\langle \left. H(\mathbf{p}) \, \right| \, \mathcal{O}(0) \, \right| \, H(\mathbf{p}) \left. \right\rangle$

Where should the Lagrangian be modified?

$$\langle \mathcal{O} \rangle = \frac{1}{N} \sum_{i=1}^{N} \overline{\mathcal{O}}[A_i]$$
 where

 $P(A_i) \propto \det[M] e^{-S_g}$ $S^{ab}_{\mu\nu}(x,y) = M^{-1}{}^{ab}_{\mu\nu}(x,y)$

Modify propagators \rightarrow connected contribution

 $\begin{array}{l} \mbox{Modify gauge fields} \\ \rightarrow \mbox{disconnected contribution} \end{array}$

Cheap to implement
 Require new gauge fields
 Previously applied to calculation of quark axial charges

Alexander Chambers

Alexander Chambers

Southampton July 25, 2016

Quark Axial Charges in Hadrons (Connected)

Construct additional hadrons from existing propagators

[Chambers et al. (PRD 2014)]

Alexander Chambers

Quark Axial Charges in the Nucleon (Disconnected)

Disconnected calculation \implies new gauge fields

[Chambers et al. (PRD 2015)]

How do we extend method to non-forward matrix elements?

Feynman-Hellmann Recipe (Non-Forward Case)

How to calculate $\langle H(\mathbf{p}') | \mathcal{O}(0) | H(\mathbf{p}) \rangle$?

1. Add term to Lagrangian

$$\mathcal{L}(x) \to \mathcal{L}(x) + \lambda \left(e^{i\mathbf{q}\cdot\mathbf{x}} + e^{-i\mathbf{q}\cdot\mathbf{x}} \right) \mathcal{O}(x)$$

2. Measure hadron energy while changing $\boldsymbol{\lambda}$

$$G(\lambda; \mathbf{p}'; t) \stackrel{\text{large } t}{\propto} e^{-E_H(\lambda, \mathbf{p}')t}$$

3. Calculate matrix element from energy shifts

$$\frac{\partial E_{H}(\lambda, \mathbf{p}')}{\partial \lambda} \bigg|_{\lambda=0} = \frac{1}{2E(\mathbf{p}')} \left\langle H(\mathbf{p}') \left| \mathcal{O}(0) \right| H(\mathbf{p}) \right\rangle$$

Additional Requirement \rightarrow Breit frame kinematics only

Turns out that
$$p' = -p$$
 is a good idea

$$\mathcal{L}
ightarrow \mathcal{L} + \lambda 2 \cos\left(\mathbf{q} \cdot \mathbf{x}
ight) \mathcal{O}$$

$$\left. \left. \partial E_H / \partial \lambda \right|_{\lambda=0} \propto \left\langle \left. H(\mathbf{p}') \right| \mathcal{O}(0) \left| \left. H(\mathbf{p}) \right. \right\rangle \right.$$

Want to calculate pion form factor

Flavour contributions to vector matrix element

$$\langle \pi(\mathbf{p}') \, \big| \, \bar{q}(0) \gamma_{\mu} q(0) \, \big| \, \pi(\mathbf{p}) \, \rangle = (p'_{\mu} + p_{\mu}) F^{q}_{\pi}(Q^{2})$$

Add vector operator to Lagrangian

$$\mathcal{L}(x) \rightarrow \mathcal{L}(x) + 2\lambda \cos(\mathbf{q} \cdot \mathbf{x}) \, \bar{q}(x) \, \gamma_{\mu} \, q(x)$$

For temporal current insertion

$$\frac{\partial E_{\pi}(\lambda, \mathbf{p})}{\partial \lambda} \Big|_{\lambda=0} \stackrel{\mathbf{p}'=-\mathbf{p}}{=} F_{\pi}^{q}(Q^{2})$$

For spatial current insertion

$$\left.\frac{\partial E_{\pi}(\lambda,\mathbf{p})}{\partial \lambda}\right|_{\lambda=0} \stackrel{\mathbf{p}'=-\mathbf{p}}{=} 0$$

Choose this

Alexander Chambers

$$\mathcal{L}
ightarrow \mathcal{L} + \lambda 2 \cos \left(\mathbf{q} \cdot \mathbf{x}
ight) \mathcal{O}$$

 $\partial E_H / \partial \lambda |_{\lambda=0} \propto \langle H(\mathbf{p}') | \mathcal{O}(0) | H(\mathbf{p}) \rangle$

$$m_{\pi} pprox 470 \,\, {
m MeV} \quad N_{
m conf} = 750 \,\,\,\, 32^3 imes 64 \,\,\,\, {f q} = (2,0,0)$$

Require Breit frame kinematics

$$\textbf{q}=(2,0,0)\implies \textbf{p}'=(\pm 1,0,0)$$

Otherwise no signal at $\mathcal{O}(\lambda)$

Choose \mathbf{q}^2 points allowing $\mathbf{p}' = -\mathbf{p}$

$$\mathbf{q}^2 = (4n)\frac{2\pi}{L} \quad n \in \mathbb{Z}^+$$

Minimises source/sink momentum for particular $\mathbf{q}^2 \rightarrow$ minimises noise

15 / 22

 $\vec{p}' = (0, 0, 0)$

Alexander Chambers

$$\mathcal{L} \to \mathcal{L} + \lambda 2 \cos \left(\mathbf{q} \cdot \mathbf{x} \right) \mathcal{O}$$

 $\left. \partial E_{H} / \partial \lambda \right|_{\lambda=0} \propto \left\langle \left. H(\mathbf{p}') \right| \mathcal{O}(0) \left| \left. H(\mathbf{p}) \right. \right\rangle \right.$

In the Breit frame, individual flavour contributions

$$\left\langle N_{s}(\mathbf{p}') \left| \bar{q}(0)\gamma_{\mu}q(0) \right| N_{s}(\mathbf{p}) \right\rangle = \bar{u}_{s}(\mathbf{p}') \left[\gamma_{\mu}F_{1}^{q}(Q^{2}) + \frac{\sigma_{\mu\nu}q_{\nu}}{2M}F_{2}^{q}(Q^{2}) \right] u_{s}(\mathbf{p})$$

Add vector operator to Lagrangian (identical to pion calculation)

$$\mathcal{L}(x) \to \mathcal{L}(x) + 2\lambda \cos(\mathbf{q} \cdot \mathbf{x}) \, \bar{q}(x) \, \gamma_{\mu} \, q(x)$$

For Temporal Current project unpolarised states

$$\frac{\partial E_N(\lambda, \mathbf{p})}{\partial \lambda} \Big|_{\lambda=0}^{\Gamma_{\text{unpol.}}} \stackrel{\mathbf{p}'=-\mathbf{p}}{=} \frac{M}{E} G_E^q(Q^2) \qquad G_E^q(Q^2) = F_1^q(Q^2) - \frac{Q^2}{4M^2} F_2^q(Q^2)$$

For Spatial Current project spin-up/down states

$$\frac{\partial E_N(\lambda, \mathbf{p})}{\partial \lambda} \Big|_{\lambda=0}^{\Gamma_{\pm}} \stackrel{\mathbf{p}'=-\mathbf{p}}{=} \pm \frac{\mathbf{q} \times \hat{\mathbf{e}}}{2E} G_M^q(Q^2) \qquad G_M^q(Q^2) = F_1^q(Q^2) + F_2^q(Q^2)$$

 $m_{\pi} \approx 470 \text{ MeV} \qquad \approx 1000 - 1500 \text{ configurations} \qquad 32^3 \times 64$

Exciting results from application of Feynman-Hellmann technique to non-forward matrix elements

Able to access much higher momentum transfers

 $m_{\pi} \approx 470 \text{ MeV} \qquad \approx 1000 - 1500 \text{ configurations} \qquad 32^3 \times 64$

