Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge

André Sternbeck

Friedrich-Schiller-Universität Jena, Germany

Lattice 2016, Southampton (UK)

Overview	in collaboration with		
 Motivation Triple-Gluon Quark-Gluon 	Balduf (HU Berlin) Kızılersü & Williams (Adelaide U), Oliveira & Silva (Coimbra U), Skullerud (NUIM, Maynooth)		

イロト イヨト イヨト イヨ

Motivation

Research in hadron physics

- Successful but not restricted to lattice QCD
- Other nonperturbative frameworks exist (for better or for worse)
 - Bound-state equations / Dyson-Schwinger equations
 - Functional Renormalization group (FRG) equation (aka Wetterich equation)

イロト イポト イヨト イヨト

Motivation

Research in hadron physics

- Successful but not restricted to lattice QCD
- Other nonperturbative frameworks exist (for better or for worse)
 - Bound-state equations / Dyson-Schwinger equations
 - Functional Renormalization group (FRG) equation (aka Wetterich equation)

Bound-state equations

- Bethe-Salpether equations: Mesonic systems $(q\bar{q})$
- Faddeev/ quark-diquark equations: Baryonic systems (qqq)
- no restriction to Euclidean metric (makes it simpler)
 - for lattice QCD Euclidean metric mandatory (can calculate static quantities: masses, etc. or equilibrium properties)

イロト イポト イヨト イヨト

Motivation

Research in hadron physics

- Successful but not restricted to lattice QCD
- Other nonperturbative frameworks exist (for better or for worse)
 - Bound-state equations / Dyson-Schwinger equations
 - Functional Renormalization group (FRG) equation (aka Wetterich equation)

Bound-state equations

- Bethe-Salpether equations: Mesonic systems $(q\bar{q})$
- Faddeev/ quark-diquark equations: Baryonic systems (qqq)
- no restriction to Euclidean metric (makes it simpler)
 - for lattice QCD Euclidean metric mandatory (can calculate static quantities: masses, etc. or equilibrium properties)
- Input: nonperturbative n-point Green's functions (in a gauge)
 - typically taken from numerical solutions of their Dyson-Schwinger equations
 - Note: Greens function enter in a certain gauge, but physical content obtained from BSEs (masses, decay constants) is gauge independent
- Main problem: truncation of system of equations required

< ロ > < 同 > < 回 > < 回 > < 回 > <

Motivation: Meson-BSE as an example

Meson-BSE (meson = two-particle bound state)

$$\Gamma(P,p) = \int_{q}^{\Lambda} \mathcal{K}_{\alpha\gamma,\delta\beta}(p,q,P) \left\{ S(\underbrace{q+\sigma P}_{q_{+}}) \Gamma(P,q) S(\underbrace{q+(\sigma-1)P}_{-q_{-}}) \right\}_{\gamma\delta}$$

Scattering Kernel \mathcal{K}

Quark Propagator S (DSE)

Observables

[nice review: Eichmann et al., 1606.09602]

Masses

(Reduction to an eigenvalue equation for fixed J^{PC} . Masses: $\lambda(P^2 = -M_i^2) = 1$)

Form factors

(Build electrom. current from BS-amplitude $\Gamma(q, P^2 = -M^2)$ (solution) and the full quark propagator and quark-photon vertex; and project on tensor structure)

• . . .

Motivation: Meson-BSE as an example

Meson-BSE (meson = two-particle bound state)

$$\Gamma(P,p) = \int_{q}^{\Lambda} \mathcal{K}_{\alpha\gamma,\delta\beta}(p,q,P) \left\{ S(\underline{q+\sigma P}) \ \Gamma(P,q) \ S(\underline{q+(\sigma-1)P}) \right\}_{\gamma\delta}$$

Scattering Kernel \mathcal{K}

Quark Propagator S (DSE)

Gluon propagator DSE

Motivation: Input from lattice QCD

Greens function from lattice QCD

- Nonperturbative structure of n-point functions in a certain gauge (Landau gauge) are needed to improve truncations / cross-check results
- Lattice QCD can provide these nonperturbative + untruncated

 - 3-point: quark-anti-quark-gluon, 3-gluon, (ghost-ghost-gluon)
 - ▶ 4-point: 4-gluon vertex, ... ▶ 5-point: ...
- Already: 2-point functions are used as input to DSE studies

< ロ > < 同 > < 三 > < 三 >

Motivation: Input from lattice QCD

Greens function from lattice QCD

- Nonperturbative structure of n-point functions in a certain gauge (Landau gauge) are needed to improve truncations / cross-check results
- Lattice QCD can provide these nonperturbative + untruncated

 - 3-point: quark-anti-quark-gluon, 3-gluon, (ghost-ghost-gluon)
 - ► 4-point: 4-gluon vertex, ... ► 5-point: ...
- Already: 2-point functions are used as input to DSE studies

Most desired 3-point functions (quenched + unquenched)

- Quark-gluon Vertex and Triple-Gluon Vertex
- Improved truncations of quark-DSE

Parameters of our gauge field ensembles

 $N_f = 2$ and $N_f = 0$ ensembles

β	κ	$L_s^3 \times L_t$	<i>a</i> [fm]	m_{π} [GeV ²]	#config
5.20	0.13596	$32^3 imes 64$	0.08	280	900
5.29	0.13620	$32^3 imes 64$	0.07	422	900
5.29	0.13632	$32^3 imes 64$	0.07	290	908
5.29	0.13632	$64^3 imes 64$	0.07	290	750
5.29	0.13640	$64^3 imes 64$	0.07	150	400
5.40	0.13647	$32^3 imes 64$	0.06	430	900
6.16		$32^{3} \times 64$	0.07	—	1000
5.70	—	$48^3 imes 96$	0.17	—	1000
5.60	_	$72^3 \times 72$	0.22	_	699

Allows to study

- quenched vs. unquenched, quark mass dependence
- discretization and volume effects
- infrared behavior, i.e., $|p| \approx 0.1 \dots 1$ GeV

Acknowledgements

- $N_f = 2$ configurations provided by RQCD collaboration (Regensburg)
- Gauge-fixing and calculation of propagators at the HLRN (Germany)

イロト イポト イヨト イヨト

Results for

Triple-gluon vertex in Landau gauge

(in collaboration with MSc. P. Balduf)

イロト イヨト イヨト イヨト

Triple-Gluon-Vertex in Landau gauge

$$\Gamma_{\mu
u\lambda}(\mathbf{p},\mathbf{q}) = \sum_{i=1,\dots,14} f_i(p,q) P^{(i)}_{\mu\nu\lambda}(p,q)$$

イロト 不得下 イヨト イヨト

- Perturbation theory: f_i known up to three-loop order (Gracey)
- Nonperturbative structure mostly unknown (few DSE and lattice results)
- Most relevant ingredient for improved truncations of quark-DSE

DSE results

- Blum et al., PRD89(2014)061703 (improved truncation)
- Eichmann et al., PRD89(2014)105014 (full transverse form)

• . . .

$$P^{(1)} = \delta_{\mu\nu} p_{\lambda}, \quad P^{(2)} = \delta_{\nu\lambda} p_{\mu}, \ldots, \quad P^{(5)} = \delta_{\nu\lambda} q_{\mu}, \ldots, \quad P^{(9)} = \frac{1}{\mu^2} q_{\mu} p_{\nu} q_{\lambda}, \ldots$$

Triple-Gluon-Vertex in Landau gauge

$$\Gamma_{\mu
u\lambda}(\mathbf{p},\mathbf{q}) = \sum_{i=1,\dots,14} f_i(p,q) P^{(i)}_{\mu\nu\lambda}(p,q)$$

イロト イポト イヨト イヨト

- Perturbation theory: f_i known up to three-loop order (Gracey)
- Nonperturbative structure mostly unknown (few DSE and lattice results)
- Most relevant ingredient for improved truncations of quark-DSE

Lattice results (deviation from tree-level)

- Cucchieri et al., [PRD77(2008)094510], quenched SU(2) Yang-Mills
 - "zero-crossing" at small momenta (2d, 3d)
- Athenodorou et al. [1607.01278], quenched SU(3) data (4d)
 - \blacktriangleright "zero-crossing" for $p^2 < 0.03 \, {\rm GeV^2}$ for symmetric momentum setup
- Duarte et al. [1607.03831], quenched SU(3) data (4d)
 - "zero-crossing" for $p^2 \sim 0.05 \,\text{GeV}^2$ for p = -q

$$P^{(1)} = \delta_{\mu\nu} p_{\lambda}, \quad P^{(2)} = \delta_{\nu\lambda} p_{\mu}, \ldots, \quad P^{(5)} = \delta_{\nu\lambda} q_{\mu}, \ldots, \quad P^{(9)} = \frac{1}{\mu^2} q_{\mu} p_{\nu} q_{\lambda}, \ldots$$

Lattice calculation: nonperturbative deviation from tree-level

• Gauge-fix all gauge field ensembles to Landau gauge

$$U_{x\mu} \rightarrow U_{x\mu}^{g} = g_{x}U_{x\mu}g_{x+\mu}^{\dagger}$$
 with $\nabla_{\mu}^{bwd}A_{x\mu}^{a}[U^{g}] = 0$

- Gluon field: $A^a_\mu(p) = \sum_x e^{ipx} A^a_\mu(x)$ with $A^a_\mu(x) := 2 \Im \mathfrak{m} \operatorname{Tr} T^a U_{x\mu}$
- Triple-gluon Green's function (implicit color sum)

$$G_{\mu\nu\rho}(p,q,p-q) = \langle A_{\mu}(p)A_{\nu}(q)A_{\rho}(-p-q) \rangle_{U}$$

- Gluon propagator $D_{\mu\nu}(p) = \langle A_{\mu}(p)A_{\nu}(-p) \rangle_U$
- Momenta: all pairs of nearly diagonal |p| = |q|
- Average data for equal a|p| = a|q| and nearby momenta

Projection on lattice tree-level form

$$G_1(p,q) = \frac{\Gamma^{(0)}_{\mu\nu\rho}}{\Gamma^{(0)}_{\mu\nu\rho}} \frac{G_{\mu\nu\rho}(p,q,p-q)}{D_{\mu\lambda}(p)D_{\nu\sigma}(q)D_{\rho\omega}(p-q)\Gamma^{(0)}_{\lambda\sigma\omega}}$$

・ロン ・四 と ・ ヨ と ・ ヨ と

Effect of binning and tree-level improvement

- Achieve much reduced statistical noise per configuration through binning
- Lattice tree-level improvement relevant only for larger ap_{μ} (expected)
- Deviations moderate if large momenta are not of interest

1) Angular dependence

- Consider |p| = |q| and $\phi = \angle(p,q)$
- Visible but small angular dependence in all lattice data
- small |p|: $\phi = 180^{\circ}$ data increase less strong than $\phi = 60^{\circ}$ data
- large |p|: $\phi = 180^{\circ}$ data falls less strong than $\phi = 60^{\circ}$ data

< ロ > < 同 > < 三 > < 三

2) Quenched versus unquenched ($N_f = 2$)

- Where to renormalize ?
- Different slope at small momenta ($N_f = 0$ vs. $N_f = 2$)
- Consistent with findings from Williams et al., PRD93(2016)034026
- Unquenching effect cleary visible but small depending on ren. point

< ロト < 同ト < ヨト < ヨ)

3) "Zero crossing" considered here for $N_f = 0$

- Angular dependence
- Quenched vs. unquenched
- "Zero-Crossing"

Cucchieri, Maas, Mendes (2008) 3-dim SU(2) YM theory

- Is "zero-crossing" feature of 2- and 3-dim YM theory?
- Does it happens at much lower momentum for 4-dim?

イロト イヨト イヨト イヨト

3) "Zero crossing" considered here for $N_f = 0$

- Angular dependence
- Quenched vs. unquenched
- "Zero-Crossing"

Cucchieri, Maas, Mendes (2008) 3-dim SU(2) YM theory

- Is "zero-crossing" feature of 2- and 3-dim YM theory?
- Does it happens at much lower momentum for 4-dim?

イロト イヨト イヨト イヨト

Bose-symmetric transverse tensor structure Eichmann et al., PRD89(2014)105014

Tensor structure of triple-gluon vertex

$$\Gamma_{\mu
u\lambda}(p,q) = \sum_{i=1}^{14} f_i(p,q) P^{(i)}_{\mu
u\lambda}(p,q)$$

Tensor structure of transversely projected triple-gluon vertex

$$\Gamma^{T}_{\mu\nu\rho}(p,q) = \sum_{i=1}^{4} F_i(\mathcal{S}_0,\mathcal{S}_1,\mathcal{S}_2) \tau^{\mu\nu\rho}_{i\perp}(p_1,p_2,p_3)$$

with the Lorentz invariants

$$[p_1 = p, p_2 = q, p_3 = -(p+q)]$$

イロト イポト イヨト イヨト

$$\begin{split} \mathcal{S}_0 &\equiv \mathcal{S}_0(p_1, p_2, p_3) = \frac{1}{6} \left(p_1^2 + p_2^2 + p_3^2 \right) \\ \mathcal{S}_1 &\equiv \mathcal{S}_1(p_1, p_2, p_3) = a^2 + s^2 \in [0, 1] \\ \mathcal{S}_2 &\equiv \mathcal{S}_2(p_1, p_2, p_3) = s(3a^2 - s^2) \in [-1, 1] \\ \text{and} \quad s \equiv \frac{p_1^2 + p_2^2 - 2p_3^2}{6\mathcal{S}_0} \end{split}$$

First lattice results for transverse tensor structure

DSE study of triple-gluon vertex [Eichmann et al. (2014)]

- Leading form factor is F₁
- $F_{i=2,3,4}$ close to zero \forall momenta

Lattice results confirm that behavior

イロト 不得下 イヨト イヨト

First lattice results for transverse tensor structure

DSE study of triple-gluon vertex [Eichmann et al. (2014)]

- Leading form factor is F₁
- $F_{i=2,3,4}$ close to zero \forall momenta

Lattice results confirm that behavior

イロト 不得下 イヨト イヨト

Results for

Quark-gluon vertex in Landau gauge

(in collaboration with Kızılersü, Oliveira, Silva, Skullerud, Williams)

イロト イヨト イヨト イヨト

Quark-Gluon vertex in Landau gauge

Quark-Gluon Green's function

$$G_{\mu}^{ar{\psi}\psi A} = \Gamma_{\lambda}^{ar{\psi}\psi A}(p,q) \cdot S(p) \cdot D_{\mu\lambda}(q) \cdot S(p+q)$$

• Up to now: only lattice data for quenched QCD

Ball-Chiu parametrization

$$\Gamma^{ar{\psi}\psi A}_{\mu}(p,q) = \Gamma^{ST}_{\mu}(p,q) + \Gamma^{T}_{\mu}(p,q)$$

with $\Gamma^{ST}_{\mu}(p,q) = \sum_{i=1...4} \lambda_i(p^2,q^2) L_{i\mu}(p,q)$ satisfies Slavnov-Taylor identities $\Gamma^{T}_{\mu}(p,q) = \sum_{i=1...8} \tau_i(p^2,q^2) T_{i\mu}(p,q)$ is transverse $(q_{\mu}\Gamma^{T}_{\mu} = 0)$.

$$L_{1\mu}(p,q) = \gamma_{\mu}, \quad L_{2\mu}(p,q) = -\gamma_{\mu}(2p_{\mu} + q_{\mu}), \dots,$$

$$T_{1\mu}(p,q) = i[p_{\mu}q^2 - q_{\mu}(p \cdot q)], \dots$$

<ロ> (日) (日) (日) (日) (日)

Quark-Gluon vertex in Landau gauge

Quark-Gluon Green's function

 $G^{ar{\psi}\psi\mathcal{A}}_{\mu}=\Gamma^{ar{\psi}\psi\mathcal{A}}_{\lambda}(p,q)\cdot S(p)\cdot D_{\mu\lambda}(q)\cdot S(p+q)$

• Up to now: only lattice data for quenched QCD

Lattice calculation

- Calculate (on same gauge-fixed ensembles)
 - () quark and gluon propagators: $S^{ab}_{lphaeta}(p)$ and $D^{ab}_{\mu
 u}$
 - 2 Quark-Antiquark-Gluon Greens functions: $G^{\bar{\psi}\psi A}_{\mu}(p,q) = \left\langle A^{a}_{\mu}(q)S^{bc}_{\alpha\beta}(q) \right\rangle$
- Amputate: gluon and quark legs and project out tensor structure

$$\Gamma_{\lambda}^{\bar{\psi}\psi A}(p,q) = \frac{G_{\mu}^{\bar{\psi}\psi A}(p,q)}{D(q)S(p)S(p+q)} = \sum_{i=1...4} \lambda_i(p^2,q^2) L_{i\mu} + \sum_{i=1...8} \tau_i(p^2,q^2) T_{i\mu}$$

• Averaging over physically equivalent momenta, bin over nearby momenta

イロト 不得下 イヨト イヨト

Soft-gluon kinematic: q = 0

- $\lambda_{i=1,2,3}(p,0) \neq 0$
- $\tau_i(p, 0) = 0$

Discretization effects

• Significant for large p^2 even with tree-level corrections

Interesting

- Unquenching pronounced for λ_1 and λ_3
- For p > 2 GeV: λ_i ~ constant (ignoring discretization effects)

May explain partial success of rainbow-ladder truncation

(日) (同) (日) (日)

Soft-gluon kinematic: q = 0

- $\lambda_{i=1,2,3}(p,0) \neq 0$
- $\tau_i(p, 0) = 0$

Discretization effects

• Significant for large p^2 even with tree-level corrections

Interesting

- Unquenching pronounced for λ_1 and λ_3
- For p > 2 GeV: λ_i ~ constant (ignoring discretization effects)

May explain partial success of rainbow-ladder truncation

イロト 不得下 イヨト イヨト

Soft-gluon kinematic: q = 0

- $\lambda_{i=1,2,3}(p,0) \neq 0$
- $\tau_i(p, 0) = 0$

Discretization effects

• Significant for large p^2 even with tree-level corrections

Interesting

- Unquenching pronounced for λ_1 and λ_3
- For p > 2 GeV: λ_i ~ constant (ignoring discretization effects)

May explain partial success of rainbow-ladder truncation

イロト 不得下 イヨト イヨト

Soft-gluon kinematic: q = 0

- $\lambda_{i=1,2,3}(p,0) \neq 0$
- $\tau_i(p, 0) = 0$

Discretization effects

• Significant for large p^2 even with tree-level corrections

Interesting

- Unquenching pronounced for λ_1 and λ_3
- For p > 2 GeV: λ_i ~ constant (ignoring discretization effects)

May explain partial success of rainbow-ladder truncation

イロト 不得下 イヨト イヨト

Work in progress: Other kinematics $\rightarrow \tau_i(p,q)$ and 64^4 lattices.

Summary

New lattice data for triple-gluon and quark-gluon vertex in Landau gauge

- Quenched/unquenched ($N_f = 2$) data
- Different quark masses, lattice spacings and volumes
- Until now, almost nothing available from the lattice (Recent papers by Athenodorou et al. [1607.01278] and Duarte et al. [1607.03831])
- Important for cross-checks / input to continuum functional approaches

Data still preliminary, but suggest

- Triple-gluon: Lattice results qualitatively agree with recent DSE results
 - Stronger momentum dependence only at small momenta
 - Leading form factor of triple-gluon vertex is F_1 , others $F_{i>1} \sim 0$
 - Clear unquenching effect, mild quark-mass dependence
 - "Zero crossing" of G_1 <u>no clear</u> answer (down to $p^2 \sim 0.007 \,\text{GeV}^2$!)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Summary

New lattice data for triple-gluon and quark-gluon vertex in Landau gauge

- Quenched/unquenched ($N_f = 2$) data
- Different quark masses, lattice spacings and volumes
- Until now, almost nothing available from the lattice (Recent papers by Athenodorou et al. [1607.01278] and Duarte et al. [1607.03831])
- Important for cross-checks / input to continuum functional approaches

Data still preliminary, but suggest

- Triple-gluon: Lattice results qualitatively agree with recent DSE results
 - Stronger momentum dependence only at small momenta
 - Leading form factor of triple-gluon vertex is F_1 , others $F_{i>1} \sim 0$
 - Clear unquenching effect, mild quark-mass dependence
 - "Zero crossing" of G_1 <u>no clear</u> answer (down to $p^2 \sim 0.007 \,\text{GeV}^2$!)

• Quark-gluon:

- ▶ Significant momentum dependence only below $p < 2 \, {\rm GeV}^2$
- For p > 3 GeV large discretization effects
- Tree-Level corrections have to be implemented for all λ_i and τ_i (sufficient?)
- Analysis of 64^4 data will gives us access to lower p (work in progress)

Summary

New lattice data for triple-gluon and quark-gluon vertex in Landau gauge

- Quenched/unquenched ($N_f = 2$) data
- Different quark masses, lattice spacings and volumes
- Until now, almost nothing available from the lattice (Recent papers by Athenodorou et al. [1607.01278] and Duarte et al. [1607.03831])
- Important for cross-checks / input to continuum functional approaches

Data still preliminary, but suggest

- Triple-gluon: Lattice results qualitatively agree with recent DSE results
 - Stronger momentum dependence only at small momenta
 - Leading form factor of triple-gluon vertex is F_1 , others $F_{i>1} \sim 0$
 - Clear unquenching effect, mild quark-mass dependence
 - "Zero crossing" of G_1 <u>no clear</u> answer (down to $p^2 \sim 0.007 \,\text{GeV}^2$!)

Quark-gluon:

- ▶ Significant momentum dependence only below $p < 2 \, {\rm GeV}^2$
- For p > 3 GeV large discretization effects
- Tree-Level corrections have to be implemented for all λ_i and τ_i (sufficient?)
- Analysis of 64^4 data will gives us access to lower p (work in progress)

Thank you for coming Friday evening!

イロト 不得 トイヨト イヨト