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as(mz) is a fundamental parameter of the Standard Model;

Current status & world averages:

0.1187(3;) PDG (lattice)
as(mz) = ¢ 0.1175(17) PDG (phenomenology)
0.1184(12) FLAG2

Important input for LHC physics: accuracy < 1% is required!

Phenomenological determinations limited by systematic errors!

Lattice methods: potential for further reduction of the total
error below 1% mark.



ALPHA collaboration project

Build on CLS effort [Bruno et al, JHEP 1502 (2015) 043]:
o Ny =2+ 1 state of the art lattice QCD simulations

@ nonperturbatively O(a) improved Wilson quarks &
Lischer-Weisz gauge action;

@ open boundary conditions (avoids topology freezing)

Use 3 input parameters from experiment, e.g.
Fk, mz, mg = my = My, Ms, 80
= everything else becomes a prediction, for instance
(Ne=3) : o
as (1000 x Fk) (in any renormalization scheme)

Final goal: a{""=>)(m) in the MS-scheme
@ Requires matching to Nf = 5 across the charm and bottom
thresholds (not discussed here)



The QCD A-parameter and (i) = g2(u)/4m

—B, —% g (1) 1 1 b
A=l ] e T T i

@ Continuum relation, exact at any scale p:
e require large i to evaluate integral perturbatively
e require small ¢ to match hadronic scale
= problem of large scale differences:

e The scale it must reach the perturbative regime: 1> Aqcep
o The lattice cutoff must still be larger: ;< a=!
e The volume must be large enough to contain pions:L > 1/m,

= L/a>ul>mL>1 = L/a~0(10%

= widely different scales cannot be resolved simultaneously on a
single lattice!



Finite volume couplings & Step scaling function

= break calculation up in steps [Liischer, Weisz, Wolff '91;
Jansen et al. '95]:

@ define g2(L) that runs with the space-time volume, i.e.

w=1/L
@ construct the step-scaling function

o(u) = 220)|,_py

for a range of values u € [Umin, Umax]
© iteratively step up/down in scale by factors of 2:

gz(Lmax) = Umax = Uo, U = U(Uk+1) = g2(27kLmaX)a k= Oa 13

@ match to hadronic input at a hadronic scale Lpyay,
ie. FKLmax = O(l)
© once arrived in the perturbative regime extract Aqcp



Wanted: renormalized finite volume coupling, which...

@ is non-perturbatively defined in a finite space-time volume;

@ can be expanded in perturbation theory (at least < 2-loop)
with reasonable effort;

@ is gauge invariant;
@ is quark mass-independent (defined in the chiral limit).
@ can be evaluated by MC simulation with good statistical
precision
= not easy to satisfy! Here:

@ impose Schrodinger functional (SF) boundary conditions:
periodic in space, Dirichlet in time
@ use 2 definitions of the coupling

o traditional SF coupling [Narayanan et al. '92]
o gradient flow coupling & SF b.c.’s [Fritzsch & Ramos '13]



Overview of the strategy
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(courtesy Patrick Fritzsch (Lattice'14))



A family of SF couplings |

@ Dirichlet b.c.’s in Euclidean time, Abelian, spatially constant
boundary values Cy, C; [Narayanan et al. '92]:

Ac(¥)so=0 = Ce(n,v),  Ac(x)lso=t = Ci(n,v)

= induce family of abelian, spatially constant background fields
B,, with parameters 7, v (— 2 abelian generators of SU(3)):

Be(x) = Cu(n,v) + 7 (G v) = G(m,v)) . Bo=0.

@ Absolute minimum of the action, unique up to gauge equiv.
e Pl = / DA, v, dle "4, [B] = LTo[Bl+T1[B]+0(gd)
0

@ Define
1 9,l[B] (0pS)
gg(L) aﬁro[B] n=0 nrO[B] n=0
= 1-parameter family of SF couplings as response of the system
to a change of a colour electric background field.




A family of SF couplings Il

o v-dependence is explicit, obtained by computing g2 = g3:0
and v at v =0: 1 1

) = =5 = vv
& 8
o relation between couplings at v and v = 0 gives exact ratio:
r, = N/N\, = exp(—v x 1.25516)
@ The S-function is known to 3-loops:
(47)% x by, = —0.06(3) — v x 1.26

N.B.: values v of O(1) look perfectly fine!
e infrared cutoff (finite volume) = no renormalons
@ secondary minimum B* of the action with

AS = S[B*] — S[B] = 1072/(3g?):

exp(—AS) = exp(—2.62/a) ~ (A/u)>®

= evaluates to O(107°) for a = 0.2. Instanton contributions are
even smaller.



Step scaling function for v = 0

Z(u, a/L) = 52(2L)|§2(L):u)7 O‘(U) = a/IiLrEOZ(lh a/L)

@ Non-perturbatively O(a) improved action with perturbative
boundary O(a) improvement (¢, &)

e Simulate for u-values € [1,2.012], L/a = 4,6,8,12.

o Double lattice size and measure ¥ (u, a/L) = g2(2L)

@ reduce cutoff effects perturbatively up to 2-loop order [Bode,
Weisz & Wolff '99]

Y(u,a/L) — o(u)
o(u)

5(u,a/L) = — 61(L/a)u+3s(L/a)uP+O(u?)

= cutoff effects in
Y(u,a/L)

/) = {5 oy + 6 L2)

start at order u*!



Obtaining the SSF in the continuum

Example for global fit ansatz:
2
a

82
L2 L2

2 + p2 u’

Z(z)(u, a/l) = u+ sou? 4+ s’ + ciu* + o’ + prut

@ sp, s1 fixed to perturbative values:
so =2bgIn2, s; = sg +2b1In2
@ 4 parameters: ¢, ¢, p1, p2; 19 data points, X2/d.0.f. ~1
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Remnant O(a) boundary effects as systematic error

e O(a) effects, if still present, seem to be very small.

= continuum extrapolations with leading O(a?) justified

@ As a safeguard we include a systematic error due to
incomplete cancellation of O(a) effects:
e Estimate the derivative z% combining perturbation theory

with simulations at the larger couplings:

0% (u, a/L)

G = _%u x 0p(u),  Op(u) = —(1+0.57(3)u)

o In the expansion c(go) = 1+ cMg2 + cPgé + ... we use the

last known term at the corresponding 3 = 6/g¢ to estimate

A (u,a/1) = | g /)
aCt

o Add systematic error in quadrature.
o Similarly for &, (error is 3-4 times smaller than for ¢;)

@ Error estimate is conservative and subdominant



Computation of LyA

@ Define Ly implicitly by
2%(Lo) = 2.012 = up
@ Use the non-perturbative continuum SSF o(u):
n—1=o0(up), n=1..., = up=g2(Lo/2")
e At L, = Lp/2" obtain LoA using the perturbative S-function:

Lo/\ —= 2”[ o ( /2”)] 2bO e 2b0g (L0/2n)

g(Lo/Z")d 1 1 by
— N _I_ -
: exp{ /o ¢ [ﬁ(g) bog? b%g] }

@ Repeat for schemes v # 0 using the continuum relation:
1 1
22(Lo)  2.012
= check accuracy of perturbation theory: LgA must be
independent of n and v!

— v x 0.1199(10)



Result for LA
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@ All results agree around o = 0.1:

Lo/A = 0.0303(8) error < 3% !

0.03

@ v = 0.3: this result could be inferred from larger values of «

e v = —0.5: large coefficient oc o, requires data for a ~ 0.1.



Continuum results for v = w(u)
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@ Continuum extrapolations analogous to step scaling function
@ The 2 fits perfectly agree where the data is (o > 0.08)

@ Observe large deviation from perturbation theory at o = 0.19:
(w(ng) — v — v2§2) Jvi = =3.7(2)a?

e At Ly we find w(2.012) = 0.1199(10)
= determines g2(Lo) = 2.012/ {1 — v x 0.1199(10) x 2.012}



Conclusions

@ Step-scaling techniques allow us to track the SF coupling
between 2Ly and Lg/32; covering the range 0.08 < o < 0.2

o Contact with PT established = use PT from high scale to
extract A-parameter.

LoA =0.0303(8) = LoAT=" =0.0791(21)

@ < 3 percent accuracy for A can be achieved provided o« = 0.1
is reached!

@ Scheme dependence: data around o = 0.2 can be both
perfectly fine (v = 0.3) and clearly not sufficient (v = —0.5)
= seems impossible to know beforehand!
o The reference scale Lo, defined by g2(Lo) = 2.012,
corresponds to 1/Lg ~ 4 GeV.

@ For connection to even lower energies and matching to pion
and kaon data cf. talks by A. Ramos & R. Sommer.
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