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Motivation

I CP-violation within the S(tandard) M(odel) +
new physics needs a good understanding of
flavor physics, CKM matrix elements.

I Precise (non-perturbative, first principles)
determination of |Vub|, currently the least
well determined.

I ∼ 2.5−3σ discrepancy [PDG] :
I Inclusive B→ Xu`ν :

Vub = (4.41±0.15+0.15
−0.17)×10−3

I Exclusive B→ π`ν :
Vub = (3.28±0.29)×10−3

I leptonic B→ τν via fB :
Vub = (4.22±0.42)×10−3

I theoretical and experimental input needed
I This talk: form factors for Bs→ K`ν decay
I No experimental data yet - predictions.
I Easier on the lattice (valence mK = mphys

K )

B → Xℓν

B → τν (sl)

B → τν (had)

B → πℓν
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Form Factors

I Use Heavy Quark Effective Theory.
I Ground state matrix elements 〈K|V µ (0)|Bs〉 .
I Renormalize the currents in EFT and relate to QCD (”matching”).
I Take their continuum limit.
I Extrapolate to physical quark masses in Nature.
I Map out the q2 dependence.

The QCD matrix element

〈K(pK)|V µ (0)|Bs(pBs)〉=
√

2mBs

[
v µ ·h‖(pK ·v) + pµ

⊥ ·h⊥(pK ·v)
]

with v µ = pµ

Bs
/mBs and pµ

⊥ = pµ

K− (v ·pK)v µ defines h‖ and h⊥.
In rest frame (pBs = 0), we get

(2mBs )−1/2〈K(pK)|V 0(0)|Bs〉 = h‖(EK)

(2mBs )−1/2〈K(pK)|V k (0)|Bs〉 = pk
Kh⊥(EK).

V µ (x)≡ ψ̄u(x)γµ ψb(x) has effective (mass-independent) heavy
quark fields, such that h‖,h⊥ only weakly depend on mBs .



Experimental decay rates

dΓ

dq2 =
G2

F|Vub|2
192π3m3

Bs

λ
3/2(q2)

∣∣f+(q2)
∣∣2

λ(q2) =
(
m2

Bs
+m2

K−q2)2−4m2
Bs

m2
K

I experimentally measured decay rate
I form factor f+(q2) computed in LQCD
I ⇒ determine Vub

I The so-called BCL (Bourelly, Caprini,
Lellouch) parametrization can be
used to obtain results for a
whole range of q2.
I Upto 1/mh terms, the h⊥ we calculate is directly related to f+ as

f+ =
√

mBs/2CVkhstat,RGI
⊥ .

I For f+, the h‖ contribution is 1/mh suppressed.



Heavy Quark, HQET expansion of 〈K|V µ |B〉
Problem: L−1�mπ ≈ 140MeV, . . . ,mB ≈ 5GeV� a−1

Solution: Heavy Quark Effective Theory (HQET) [ALPHA

collab. ’01-’13]

I Effective theory: expansion in 1/mh

I Non-perturbatively renormalizable (order by order
in 1/mh)

I well-defined continuum limit
I valid for kaon momenta pK�mb

I in practice pK . 1GeV⇒ q2 close to q2
max

L

a

〈O〉= 〈O〉stat + ωkina4
∑
x
〈OOkin(x)〉stat + ωspina4

∑
x

〈
OOspin(x)

〉
stat

ω{kin,spin} ∼ 1/mh

Okin(x) = ψh(x)~D
2
ψh(x), Ospin(x) = ψh(x)~σ ·~Bψh(x)



HQET (current) renormalization

V stat
0 = ψ̄uγ0ψh + acV0 (g0)ψ̄l ∑

l

←−
∇

S
l γl ψh

V stat
k = ψ̄uγk ψh−acVk

(g0)ψ̄l ∑
l

←−
∇

S
l γl γk ψh

I At static order, heavy quark fields −→ ψh, HYP1 and HYP2 action.
I Improvement coefficients cV0 ,cVk

known to 1-loop order.
I Use symmetries to relate renormalization of staic axial current Astat

0 .

(flavor non-singlet)
χ-SYM

Broken on lattice

V stat
0

V stat
k

Spin symmetry

at static order

(Broken at 1/mh)

(Astat
R )0 = Zstat

A (g0, aµ)A
stat
0 ; Astat

0 = ψ̄uγ0γ5ψh

V stat,RGI
0 = Zstat

A,RGI(g0)Z
stat
V/AV

stat
0

Zstat
V/A(g0)V

stat
0

Use [Zstat
V/A]

−1 = 0.97(3).

Close to unity in quenched, no Nf -dependence at 1-loop order.

matching, these issues can be eliminated.

V stat,RGI
k = Zstat

A,RGI(g0)V
stat
k

Affects only at 1/mh. With non-perturbative



(non-pert) Determination of Z stat
A,RGI

The strategy is to obtain the so-called Renormalization Group Invariant
quantities, ΦRGI (scale and scheme independent).
In PT, for example, the RGI corresponding to the renormalized static
heavy-light current at a scale µ is given by

(ARGI)0 = lim
µ→∞

[
2b0ḡ2(µ)

]−γ0/2b0
(Astat

R )0(µ).

Della Morte, Fritzsch, Heitger (2006)

The corresponding non-perturbative
analogue is

Z stat
A,RGI(g0) =

ΦRGI

Φ(µ)
×Z stat

A (g0,aµ)

∣∣∣∣
µ= 1

2Lmax

The first universal factor relates the
renormalization of Astat

0 at scale
µ0 = 1/Lmax calculated in the SF
scheme to the RGI operator.



Matching to QCD
The matching to QCD is done as

h‖(EK) = CV0 (M b/ΛMS)hstat,RGI
‖ (EK) · [1 + O(1/mb)],

h⊥(EK) = CVk (M b/ΛMS)hstat,RGI
⊥ (EK) · [1 + O(1/mb)]

I Because the RGI quantities are used, expressions from continuum PT
can be used for the Cx factors, upto O(α3) uncertainty. S. Bekavac et. al. (2010)

I For Nf = 2 QCD, these numbers are:
CV0 (M b/ΛMS) = 1.214(6)(13) and
CVk (M b/ΛMS) = 1.134(7)(47) and
M b/ΛMS = 21.2(1.2).

I No extra mb dependent factors appear in hstat,RGI
x .

I Non-perturbative matching of HQET with QCD non-perturbatively, also
for the vector currents (Heitger, (Wed)).



Ensembles and simulation

I non-perturbatively O(a) improved Wilson
fermions

I Nf = 2 CLS ensembles
I scale setting via fK [Fritzsch et al. ’12]

I mπL & 4
I Error estimates taking into account

auto-correlations [Schaefer et al. ’12]
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id T ×L3 a [fm] mπ [MeV] mπL # meas.
A5 64×323 0.0749(8) 330 4.0 1000
F6 96×483 0.0652(6) 310 5.0 300
N6 96×483 0.0483(4) 340 4.0 300

I for now: one value of q2 only, q2 = 21.23GeV2.
I Fixed value of q2 is realized by the use of twisted boundary

conditions in the spatial direction: ψ(x + Lk̂) = eiθk ψ(x), and the
momenta~pθ

K = (2π~n +~θ)/L, keeping Bs at rest.



Towards the continuum limit

Details of obtaining the bare estimates of hstat,bare
‖ and hstat,bare

⊥ will be
discussed by M. Koren in the next talk.
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Combining the different discretizations, in the continuum limit, we have
hstat,RGI
‖ = 0.976(41)GeV1/2 and hstat,RGI

⊥ = 0.876(43)GeV−1/2.

Form factor f+(21.22GeV2) =
√

mBs/2CVk hstat,RGI
⊥ (EK) = 1.63(8)(6)±0.24

allowing for a ∼ 15% ambiguities for the 1/mb terms.
The latter will get reduced to 1−2% with all the 1/mb terms included.



Conclusions and Outlook

Our results: f+(21.22GeV2) = 1.63(8)(6)±0.24

Conclusions
I f+(q2) for Bs→ K in HQET.
I Fully non-pertubative renormalisation setup (at LO, soon at NLO

in 1/mh).
I Small discretisation errors.
I Agreement with other results −→ Vub puzzle remains.

Outlook
I Inclusion of O(1/mh) effects in analysis (in progress).
I Measure at one or two more q2.
I Nf = 2 + 1, open BC, wrappers gone.
I Chiral extrapolation: mπ →mphys

π .
I B→ π.



Parameterisation of f (q2)×Vub

Our ultimate plan:
BCL-Parameterisation [Bourrely, Caprini, Lellouch ’09] :

f+(q2) =
1

1−q2/m2
B∗s

K−1

∑
k=0

bk

[
zk (q2)− (−1)k−K k

K
zK (q2)

]

I Correlated, combined fit of our data and experimental data
I Minimize χ2 = χ2

th + χ2
exp

I fit parameters bk ,Vub



Error budget – rough estimates

I extraction of FF through fits / ratios (≈ 2%)
I lattice spacing (scale setting): determination of q2 (≈ 1%)
I continuum extrapolations (2 . . .5%)
I chiral extrapolations (seems flat: small)
I BCL parameterisation, experimental data (none yet, for B→ π

≈ 10%)
I Nf = 2 (“To date, no significant differences between results with different values

of Nf have been observed.” [FLAG ’13] )

I HQET truncation (static: ∼ 10%, at O(1/mh): ∼ 1%; [< 1% for fBs
[Bernardoni et al. ’14] ])


