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QUDA

Effort started at Boston University in 2008, now in wide use as the GPU backend for BQCD, Chroma, CPS, MILC, TIFR, etc. 
Latest release 0.8.0 (8th February 2016) 

Provides: 
Various solvers for all major fermionic discretizations, with multi-GPU support 
Additional performance-critical routines needed for gauge-field generation 

Maximize performance 
Exploit physical symmetries to minimize memory traffic 
Mixed-precision methods 
Autotuning for high performance on all CUDA-capable architectures 
Domain-decomposed (Schwarz) preconditioners for strong scaling 
Eigenvector and deflated solvers (Lanczos, EigCG, GMRES-DR) 
Multigrid solvers for optimal convergence 

A research tool for how to reach the exascale

“QCD on CUDA” – open source, BSD license
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QUDA - LATTICE QCD ON GPUS
http://lattice.github.com/quda

This repository Pull requests Issues Gist

QUDA is a library for performing calculations in lattice QCD on GPUs. http://lattice.github.com/quda — Edit

include In ColorSpinorParam, if staggered fermions then set field dimension t… 11 days ago

lib Correctly set volumeCB for parity subset references - need to check p… a day ago

tests Requesting --test 1 with staggered_dslash_test now tests MdagM operator 11 days ago

.gitignore Updates to .gitignore and renamed multigrid_benchmark to multigrid_be… 3 months ago

CMakeLists.txt added some comments to CMakeLists.txt 3 months ago

LICENSE updated release dates 6 months ago

Makefile Merged develop branch into feature/deflation branch a year ago

NEWS updated release dates 6 months ago

README Updated README to document profiler. Profile output filename can now … 6 months ago

configure Added --enable-magma-vars option. If both --enable-magma and --enable… 6 months ago

configure.ac Added --enable-magma-vars option. If both --enable-magma and --enable… 6 months ago

configure.chroma.titan Updated configure files for MILC and Chroma on Titan. 3 years ago

configure.milc.titan Updated and fixed bugs in example configure script for MILC 3 years ago

configure.tifr1 Added example configure for building TIFR support with GPU_COMMS. 3 years ago

make.inc.in Merge branch 'develop' of github.com:lattice/quda into feature/peer_t… 4 months ago

45 2936 Watch  Unstar  Forklattice / quda

 Code  Issues 107  Pull requests 2  Wiki  Pulse  Graphs  Settings

 4,621 commits  49 branches  19 releases  16 contributors

Clone or downloadClone or download  Create new file Upload files Find file develop Branch: New pull request

Latest commit f3e2aa7 a day ago mathiaswagner committed on GitHub Merge pull request #487 from lattice/hotfix/checkerboard-reference …

 README

Release	Notes	for	QUDA	v0.8.0																									1st	February	2016
-----------------------------

Overview:

QUDA	is	a	library	for	performing	calculations	in	lattice	QCD	on
graphics	processing	units	(GPUs),	leveraging	NVIDIA's	CUDA	platform.
The	current	release	includes	optimized	Dirac	operators	and	solvers	for
the	following	fermion	actions:

*	Wilson
*	Clover-improved	Wilson
*	Twisted	mass	(including	non-degenerate	pairs)
*	Twisted	mass	with	a	clover	term
*	Staggered	fermions
*	Improved	staggered	(asqtad	or	HISQ)
*	Domain	wall	(4-d	or	5-d	preconditioned)
*	Mobius	fermion

Implementations	of	CG,	multi-shift	CG,	BiCGstab,	and	DD-preconditioned
GCR	are	provided,	including	robust	mixed-precision	variants	supporting
combinations	of	double,	single,	and	half	(16-bit	"block	floating
point")	precision.		The	library	also	includes	auxilliary	routines
necessary	for	Hybrid	Monte	Carlo,	such	as	HISQ	link	fattening,	force
terms	and	clover-field	construction.		Use	of	many	GPUs	in	parallel	is
supported	throughout,	with	communication	handled	by	QMP	or	MPI.

http://lattice.github.com/quda
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CONJUGATE GRADIENT
just as a reminder

procedure CG
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QCD PERFORMANCE LIMITERS

QCD is memory bandwidth bound
Dslash arithmetic intensity  for HISQ  ~ 0.7
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QCD PERFORMANCE LIMITERS

QCD is memory bandwidth bound
Dslash arithmetic intensity  for HISQ  ~ 0.7

exploit SU(3) symmetry:
reconstruct gauge field from 8/12 floats
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QCD PERFORMANCE LIMITERS

QCD is memory bandwidth bound
Dslash arithmetic intensity  for HISQ  ~ 0.7

exploit SU(3) symmetry:
reconstruct gauge field from 8/12 floats

Smearing kills symmetry: stuck with 18 floats

Reuse gauge field for multiple rhs
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TESLA PASCAL P100

Tesla P100  
for NVLink-enabled Servers

Tesla P100  
for PCIe-Based Servers

5.3 TF DP · 10.6 TF SP · 21 TF HP 
720 GB/sec Memory Bandwidth 
16 GB HBM2

4.7 TF DP · 9.3 TF SP · 18.7 TF HP 
Config 1: 16 GB (HBM2), 720 GB/sec 
Config 2: 12 GB (HBM2), 540 GB/sec
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NVIDIA TITAN X

11.0 TF SP 
480 GB/sec Memory Bandwidth 
12 GB GDDR5X

11 TF SP 
480 GB/sec Memory Bandwidth 
12 GB GDDR5X 
Pascal architecture

TITAN X
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MULTI-SRC DSLASH ON PASCAL
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CONJUGATE GRADIENT

exploit multi-src Dslash performance 

do all the linear algebra for each rhs 

same iteration count as CG

using multi-src Dslash
procedure CG WITH MULTI-SRC DSLASH
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MULTI-SRC CG ON PASCAL
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BLOCK KRYLOV SOLVERS

BlockCG solver suggested by O’Leary in early 80’s
retooled BlockCG by Dubrulle 2001
In exact precision converges in N / rhs iterations

Share the Krylov space
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BLOCK KRYLOV SOLVERS

BlockCG solver suggested by O’Leary in early 80’s
retooled BlockCG by Dubrulle 2001
In exact precision converges in N / rhs iterations

Application in QCD:
Nakamura et. (modified block BiCGStab)
Birk and Frommer (block methods,
including block methods for multi shift) 

Share the Krylov space

36 Y. Nakamura et al. / Computer Physics Communications 183 (2012) 34–37

Algorithm 2.2. Memory Saving Version(A, M, B,ϵ).

1 initial guess X ∈ CN×L

2 R = B − A X
3 P = R
4 choose R̃ ∈ CN×L

while maxi(|r(i)|/|b(i)|) ! ϵ

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4.1 QR decomposition P = Q γ , P ← Q
4.2 U = M P
4.3 V = AU
4.4 solve(R̃ H V )α = R̃ H R for α
4.5 R ← R − V α
4.6 X ← X + Uα
4.7 S = M R
4.8 Z = A S
4.9 ζ = Tr(Z H

k Rk)/Tr(Z H
k Zk)

4.10 X ← X + ζ S
4.11 R ← R − ζ Z
4.12 solve(R̃ H V )β = −R̃ H Z for β
4.13 P ← R + (P − ζ V )β

5 return (X)

LEE is the forward hopping term and UEE is the backward one. We
perform SAP preconditioning in the single precision for effective
use of memory bandwidth and network bandwidth between nodes.

It is known that “sloppy” precision can be used in right precon-
ditioning, but not in left one [12]. Suppose calculation of S = MT
at line 4.6 in Algorithm 2.1 is performed with “sloppy” precision
in k-th iteration. Numerical errors for Sk , Zk , ζk and Xk+1 may be
expressed as

Sk → S ′
k = Sk + δSk, (11)

Zk → Z ′
k = A S ′

k, (12)

ζk → ζ ′
k = ζk + δζk, (13)

Xk+1 → X ′
k+1 = Xk + Ukαk + ζ ′

k S ′
k. (14)

These yield

R ′
k+1 = Rk − Vkαk − ζ ′

k Z ′
k

= Rk − AUkαk − ζ ′
k A S ′

k

= B − A Xk − A
(
Ukαk + ζ ′

k S ′
k

)

= B − A X ′
k+1, (15)

which satisfies the exact relation between approximate solutions
and residuals in (k+1)-th iteration. For the case that both U = M P
at line 4.2 and S = MT at line 4.6 are computed with “sloppy” pre-
cision one can also reproduce the above relation with the following
formulae:

Uk → U ′
k = Uk + δUk, (16)

Vk → V ′
k = AU ′

k, (17)

αk → α′
k = αk + δα, (18)

Tk → T ′
k = Rk − V ′

kα
′
k, (19)

Sk → S ′′
k = Sk + δS, (20)

Zk → Z ′′
k = A S ′′

k , (21)

ζk → ζ ′′
k = ζk + δζ, (22)

Xk+1 → X ′′
k+1 = Xk + U ′

kα
′
k + ζ ′′

k S ′′
k . (23)

Fig. 2. Representative case for residual norm as a function of number of iteration
with L = 1,2,3,4,6,12 on 323 × 64.

3. Numerical test

3.1. Choice of parameters

We test modified block BiCGSTAB employing a so-called “local
source”, B = [e1, . . . , eL], with L = 12 for color-spin components.
We use 2 sets of statistically independent 10 configurations gener-
ated at almost the physical point, (κud,κs) = (0.137785,0.136600)
on 323 × 64 [1] and (0.137785,0.136650) on 644, in 2 + 1 fla-
vor lattice QCD with the nonperturbatively O (a)-improved Wilson
quark action and the Iwasaki gauge action [13] at β = 1.9. We
choose the hopping parameter κ = 0.137785 for the Wilson–Dirac
equation and NSAP = 5 with 8 × 8 × 8 × 8 domain size for the SAP
preconditioning following Ref. [1]. Parameters for SSOR method are
also fixed with NSSOR = 1 and ω = 1.26. The stopping criterion is
set to be maxi(|r(i)|/|b(i)|) ! ϵ with ϵ = 10−14.

3.2. Test environment

Numerical test is performed on 16 nodes for smaller lattice
and on 128 nodes for larger lattice of a large-scale cluster sys-
tem called T2K-Tsukuba. The machine consists of 648 compute
nodes providing 95.4 Tflops of computing capability. Each node
consists of quad-socket, 2.3 GHz Quad-Core AMD Opteron Model
8356 processors whose on-chip cache sizes are 64 KBytes/core,
512 KBytes/core, 2 MB/chip for L1, L2, L3, respectively. Each proces-
sor has a direct connect memory interface to an 8 GBytes DDR2-
667 memory and three hypertransport links to connect other pro-
cessors. All the nodes in the system are connected through a
full-bisectional fat-tree network consisting of four interconnection
links of 8 GBytes/sec aggregate bandwidth with Infiniband. For
numerical test we modify the lattice QCD simulation program LD-
DHMC/ver1.04b12.31 developed by PACS-CS Collaboration [14].

3.3. Results

Fig. 2 shows a representative case for residual norm as a func-
tion of number of iterations for modified block BiCGSTAB. We ob-
serve one of important features of block Krylov subspace methods
that the number of iterations required for convergence decreases
as the block size L is increased.

The results are summarized in Tables 1 and 2. In both tables,
the second column is total time to solve the Wilson–Dirac equation
for all 12 color-spin components at one local source. In case of
L = 6, for example, 12 right-hand side vectors are divided into two

Nakamura et al., CPC 183 (2012) 34–37  



BLOCK CG
share Krylov space between multiple rhs

procedure BLOCKCG
R(0) = B �AX(0)

P (0) = R(0)

for k = 1, 2, . . . until converged do

Z(k�1) = AP (k�1)
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⇥
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SCALING 

Dslash exploits reuse of gauge field

1 3 5 8 12 16
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EXPLOIT GPU ARCHITECTURE

CUDA supports two dimensional grid blocks: 
easy to exploit locality for texture cache / shared memory

to overcome quadratically scaling

yi =
X

aijxj + yi +=

GP100 Pascal Whitepaper GP100 GPU Hardware Architecture In-Depth 

 

NVIDIA Tesla P100 WP-08019-001_v01.1  |  13 

 

Figure 8. Pascal GP100 SM Unit 

Designed for High-Performance Double Precision 

Double precision arithmetic is at the heart of many HPC applications such as linear algebra, numerical 
simulation, and quantum chemistry. Therefore, one of the key design goals for GP100 was to significantly 
improve the delivered performance for these use cases.  

Each SM in GP100 features 32 double precision (FP64) CUDA Cores, which is one-half the number of FP32 
single precision CUDA Cores. A full GP100 GPU has 1920 FP64 CUDA Cores. This 2:1 ratio of single 
precision (SP) units to double precision (DP) units aligns better with GP100’s new datapath configuration, 
allowing the GPU to process DP workloads more efficiently. Like previous GPU architectures, GP100 
supports full IEEE 754‐2008 compliant single precision and double precision arithmetic, including support 
for the fused multiply‐add (FMA) operation and full speed support for denormalized values. 
 

� Note:  Kepler GK110 had a 3:1 ratio of SP units to DP units. 
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ORTHOGONALIZATION

simple approach: Gram-Schmidt or modified Gram-Schmidt 
becomes prohibitively expensive  

CholQR 
Gram-Matrix:     dot products of length n 
Cholesky Decomposition   of             matrix 
apply to vectors    axpy            (output, input) 

relies on the same kernel as vector operations: can get linear scaling

B = RHR

SHS = B

m⇥m

m⇥m

m⇥mQ = RS�1
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for one rhs

Co
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 [
A.
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# rhs

2 4 8 12 16

Dslash Vector operation
Orthogonalization

projected large benefits from multi-src Dslash 

linear algebra and orthogonalization 
stay constant 

relative importance of Dslash reduces
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SUMMARY
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WORK TO BE DONE

stability needs real world testing 
orthogonalization might be necessary 

iteration count improvement may 
depend on gauge field and sources 

need to finish up implementation 

add mixed precision

your milage may vary
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SPEEDUP OVER CG

reuse gauge field for Dslash 

reduced iteration count

avoid quadratical scaling in linear 
algebra and orthogonalization 

no memory overhead / setup cost

speedups up to 10x

multi-rhs Block Solvers provide an easy drop in

sp
ee

du
p 

pe
r 

rh
s 

0

2.5

5

7.5

10

# rhs

1 2 4 8 12 16

CG MSRC CG Block CG BlockCG rQ

projected




