Charm physics by $N_f = 2 + 1$ Iwasaki gauge and the six stout smeared O(a)-improved Wilson quark actions on a 96^4 lattice

Yusuke Namekawa(Univ of Tsukuba) for PACS collaboration

K-I.Ishikawa, N.Ishizuka, Y.Kuramashi, Y.Nakamura,

Y.Namekawa, Y.Taniguchi, N.Ukita, T.Yamazaki, T.Yoshie

1 Introduction

We have performed simulations of charm physics PACS-CS(2011,2013), featuring

- On the physical point, $m_{\pi} = 135 \; [\text{MeV}]$
- Small volume, $L = 2.9 \text{ [fm] } (m_{\pi}L = 2.0)$
- Finite lattice spacing, $a^{-1} = 2.2$ [GeV]
- $(N_f = 2 + 1, \text{ not } N_f = 2 + 1 + 1)$

FLAG(2016)

We have performed simulations of charm physics PACS-CS(2011,2013), featuring

- On the physical point, $m_{\pi} = 135 \; [\text{MeV}]$
- Small volume, L = 2.9 [fm] $(m_{\pi}L = 2.0) \rightarrow L = 8.1$ [fm] $(m_{\pi}L = 5.6)$
- Finite lattice spacing, $a^{-1} = 2.2$ [GeV]
- $(N_f = 2 + 1, \text{ not } N_f = 2 + 1 + 1)$

FLAG(2016)

[Development of computers]

• Thanks to a new supercomputer, called K-computer, simulations with a large spatial volume can be performed.

Year	Machine	Speed [TFlops]	$m_{\pi}[\mathrm{MeV}]$	$m_{\pi}L$
1996-2005	CP-PACS	0.6	700	7.1
2006-2011	PACS-CS	14	160	2.3
2008-2014	T2K	235	135	2.0
2012-	K-computer	10510	135	5.6
	Experiment		135	

2 Simulation setup

• Action :

Iwasaki gauge + $N_{\text{stout}} = 6$, O(a) improved Wilson fermion for sea quarks PACS(2015) + relativistic heavy fermion for valence charm quark cf. pioneering work, Symanzik gauge + $N_{\text{stout}} = 6$, $C_{\text{SW}} = 1.0$ Wilson fermion BMW(2009)

- Lattice size : $96^3 \times 96 \ (L = 8.1 \text{ fm}, \ a^{-1} = 2.3 \text{ GeV})$
- Sea quark masses: almost on the physical point ($m_{\pi} = 145$ MeV, shortly extrapolated to 135 MeV using reweighted data in $m_{\pi} = 144 156$ MeV)
- Inputs: $m_{\pi}, m_{K}, m_{\Omega}$ for m_{ud}, m_{s}, a ; m(1S) for m_{charm}
- Statistics: $N_{\text{config}} = 40 \ (2000 \ \text{MD time})$, not full statistics, yet
 - ♦ We show our preliminary results for charm physics, focusing on stout smearing and finite size influence.

[Improved action for the charm quark] We employ the relativistic heavy quark action(Tsukuba-type) S.Aoki et al.(2003)

- Since the charm quark is not too heavy, relativistic approach is needed.
- This action is designed to control heavy quark mass corrections.

 \leftarrow $O(m_Q a)$ and $O((m_Q a)(a\Lambda_{QCD}))$ terms are removed, once all of the parameters in the heavy quark action are determined nonperturbatively.

 \Diamond We employ perturbative values for the heavy quark action, except for a parameter $\nu \to \text{Next page}$

$$\begin{split} S_{RHQ} &= \sum_{x,y} \bar{q}(x) D(x,y) q(y), \\ D(x,y) &\equiv \delta_{x,y} - \kappa_{\text{heavy}} \left\{ (1-\gamma_4) U_4(x) \delta_{x+4,y} + (1+\gamma_4) U_4^{\dagger}(x) \delta_{x,y+4} \right. \\ &\left. + \sum_{i} \left((r_s - \nu \gamma_i) U_i(x) \delta_{x+i,y} + (r_s + \nu \gamma_i) U_i^{\dagger}(x) \delta_{x,y+i} \right) \right\} \\ &\left. - \delta_{x,y} \kappa_{\text{heavy}} \left\{ C_{SW}^s \sum_{i < j} \sigma_{ij} F_{ij} + C_{SW}^t \sum_{i} \sigma_{4i} F_{4i} \right\}. \end{split}$$

[Non-perturbative tuning of ν on a larger spatial volume]

- A perturbative choice of the parameter ν in the relativistic heavy quark action is not bad. The effective speed of light is $c_{\text{eff}} = 0.96(1)$.
- Non-perturbative tuning of ν is performed to reproduce the relativistic dispersion relation, $c_{\text{eff}} = 1.00(1)$.
 - Non-perturbative tuning of the relativistic heavy quark action is easier, due to finer resolution in momentum, thanks to larger volume.

 $\leftarrow p = 2\pi/L = 0.43 \text{ GeV } PACS-CS(2011,2013) \rightarrow 0.15 \text{ GeV in this work}$

3 Results

[Mass spectrum of charmonium]

- Our results agree with experiments, except for the hyperfine splitting. More detailed analysis including continuum extrapolation is needed.
 - ♦ Smearing may not be advantageous to the hyperfine splitting.
 - \leftarrow The reason may be tadpole contribution(tadpole improvement is employed in the previous work, while not in this work, due to plaq(smear) = 0.97), finite size effects, ...

[Result of charm quark mass]

- Charm quark mass is obtained by the axial Ward-Takahashi identity.
- Our result is more accurate thanks to smearing, which reduces systematic errors from renormalization factors.
 - ♦ Smearing is valuable to charm quark mass calculation.
 - ♦ No clear finite size effects are observed.

$$m_{\text{charm}}^{\overline{\text{MS}}}(\mu = m_{\text{charm}}^{\overline{\text{MS}}}) = Z_m(\mu, m_{\text{charm}}^{\overline{\text{AWI}}}) m_{\text{charm}}^{\overline{\text{AWI}}}, \quad m_{\text{charm}}^{\overline{\text{AWI}}} = m_P S \frac{\left\langle 0 | A_4^{\text{Imp}} | PS \right\rangle}{\left\langle 0 | PS | PS \right\rangle},$$

$$Z_m(\mu, m_{\text{charm}}^{\overline{\text{AWI}}}) = Z_m^{\text{NP}}(\mu, m = 0) + (Z_m(\mu, m_{\text{charm}}^{\overline{\text{AWI}}}) - Z_m(\mu, m = 0))^{\text{PT}}$$

[Cabbibo-Kobayashi-Maskawa matrix element]

- CKM matrix elements are extracted from our mass and pseudoscalar decay constant combined with experiment for the leptonic decay width.
- Our result of CKM matrix is not improved much by smearing, due to precision limitation of the experimental data.
 - ♦ Smearing is not advantageous to CKM matrix elements, waiting for experimental update, such as Belle II starting in 2016.
 - ♦ No clear finite size effects are observed.

$$\Gamma(D_S \to l\nu) = \frac{G_F^2}{8\pi} m_l^2 m_{D_S} f_{D_S}^2 \left(1 - \frac{m_l^2}{m_{D_S}^2}\right)^2 |V_{CS}|^2$$

[as explained in Introduction]

We have performed simulations of charm physics PACS-CS(2011,2013), featuring

- On the physical point, $m_{\pi} = 135 \; [\text{MeV}]$
- Small volume, L = 2.9 [fm] $(m_{\pi}L = 2.0) \rightarrow L = 8.1$ [fm] $(m_{\pi}L = 5.6)$
- Finite lattice spacing, $a^{-1} = 2.2$ [GeV] \rightarrow Calculations at other lattice spacings are ongoing.
- $(N_f = 2 + 1, \text{ not } N_f = 2 + 1 + 1)$

FLAG(2016)

[Simulations toward the continuum limit]
Simulations at other lattice spacings are ongoing to take the continuum limit.

[New supercomputer]

Due to large simulation costs, our lattice spacing is still finite.

 \rightarrow A new supercomputer will allow us to take the continuum limit.

Year	Machine	Speed [TFlops]	$m_{\pi}[\mathrm{MeV}]$	$m_{\pi}L$	$a \rightarrow 0$
1996-2005	CP-PACS	0.6	700	7.1	Yes
2006-2011	PACS-CS	14	160	2.3	yet
2008-2014	T2K	235	135	2.0	yet
2012-	K-computer	10510	135	5.6	yet
2016-	post-T2K [†]	25000	(135)	(5.6)	(Yes)
	Experiment		135		

[†] post-T2K will be installed in Dec 2016

4 Summary

Our preliminary results for charm physics on 96⁴ are presented.

- Our results for mass spectrum of charmonium reproduce experiments, except for the hyperfine splitting. More detailed analysis is needed.
 - ♦ Smearing may not be advantageous to the hyperfine splitting.
- Our result of charm quark mass is more accurate thanks to smearing, which reduces systematic errors from renormalization factors.
 - ♦ Smearing is valuable to charm quark mass calculation.
 - ♦ No clear finite size effects are observed.
- Our result of CKM matrix is not improved much by smearing, due to precision limitation of the experimental data.
 - ♦ Smearing is not advantageous to CKM matrix elements, waiting for experimental update, such as Belle II starting in 2016.
 - ♦ No clear finite size effects are observed.