Impact of dynamical charm quarks

Motivation

- An enormous effort is made to generate $N_f = 2 + 1$ configurations
 - ► BMW, CLS, JLQCD, RBC/UKQCD, ...
- Advantages
 - Cheaper
 - odd numbers of flavors are expensive, e.g inclusion of $s \sim$ doubling of costs
 - Easier to define (and keep!) a chiral trajectory
 - The charm quark has a very small impact on low energy observables (decoupling)
 - No lattice artifacts $O([am_c]^{\alpha})$ which may be difficult to control
 - With Wilson fermions: one may get away with b_X from PT
- Disadvantage
 - Unknown systematical errors in high energy observables (where decoupling does not apply)

Goal

Estimate the difference between $N_{\rm f}=2+1+1$ and $N_{\rm f}=2+1$ for high energy observables

e.g. charmonia masses or static force at small distances

Decoupling

The effect of heavy sea quarks at low energies

• Effective theory $\mathcal{L}_{eff} = \mathcal{L}^{N_1} + \frac{1}{M^2}\mathcal{L}_6 + \dots$

[S.Weinberg (1979)]

- ► *N*_q quarks in total
- ► N_I light quarks
- ► Effective theory contains only the light quarks. Leading order describes full theory up to power-corrections O((Λq/M)²)
- Detailed study

[M.Bruno, J.Finkenrath, F.Knechtli, B.Leder, R.Sommer (2014)]

[A.Athenodorou, M.Bruno, J.Finkenrath, F.Knechtli, B.Leder, M.Marinkovic, R.Sommer (2014)]

Factorization formula

- Particularly simple: $\frac{m_q^{\text{had1}}(M)}{m_q^{\text{had2}}(M)} = r + O(M^{-2})$
- ► Numerical study with $N_q = 2$, $N_l = 0$: $r_0/\sqrt{t_0}$ has a 0.1(6)% effect at $M \sim M_c/2$

Strategy

We compare QCD with $N_{\rm f}=$ 2 heavy ($M\sim M_c$) quarks to quenched QCD

- We want to
 - Further confirm decoupling
 - * Full theory = $QCD^{N_f=2}$
 - * Effective theory = $QCD^{N_f=0}$
 - Investigate "high" energy observables for which decoupling does not apply

Strategy

- Simulate $QCD^{N_f=2}$ at $M = M_c$, several lattice spacings
- Compute: r_0/a , t_0/a^2 , $a m_P$, $a m_V$
- Continuum extrapolate dimensionless ratios, e.g. $r_0/\sqrt{t_0}$, $\sqrt{t_0}m_{\rm P}$, $\sqrt{t_0}m_{\rm P}$, $m_{\rm V}/m_{\rm P}$
- Simulate QCD^{*N*_f=0}. Matching:

$$\begin{bmatrix} t_0/a \end{bmatrix}^{N_t=0} \approx \begin{bmatrix} t_0/a \end{bmatrix}^{N_t=2}$$
$$\begin{bmatrix} \sqrt{t_0}m_P \end{bmatrix}^{N_t=0} \stackrel{!}{=} \begin{bmatrix} \sqrt{t_0}m_P \end{bmatrix}^{N_t=2}_{\text{cont}}$$

 $\Rightarrow \beta$ for similar lattice spacings

 $\Rightarrow \mu$

Simulations

Dynamical quarks

- Gauge action: plaquette, $\beta \in \{5.7, 6.0, 6.2\}$
- Fermion action: doublet of twisted mass fermions $\psi = \begin{pmatrix} c \\ c' \end{pmatrix}$
 - Csw [K.Jansen, R.Sommer (1997)]
 - κ_c interpolation of [P.Fritzsch et al (2012)], [P.Fritzsch, N.Garron, J.Heitger (2015)]
 - $a \mu = Z_P \times \frac{M_c}{\Lambda^{(2)}} \times \Lambda^{(2)} L_1 \times \frac{\overline{m}}{\overline{M}} \times \frac{a}{L_1}$ [P.Fritzsch, F.Knechtli, B.Leder, M.Marinkovic, S.Schaefer, R.Sommer, F.Virotta (2012)]

Quenched quarks

- Gauge action: plaquette, $\beta \in \{6.34, 6.672, 6.9\}$ Estimated from $\frac{r_0}{a}(\beta)$ [S.Necco, R.Sommer (2001)] and t_0/r_0^2 [M.Bruno]
- Valence quarks: doublet of twisted mass fermions
 - Csw [M.Lüscher, S.Sint, R.Sommer, P.Weisz, U.Wolff(1996)]
 - κ_c interpolation of [M.Lüscher, S.Sint, R.Sommer, P.Weisz, U.Wolff (1996)]
 - $a\mu$: For each β , 3 values \rightarrow interpolation to matching point

Ensembles

- Open boundaries in time, periodic in space
 - Milder critical slowing down than on torus
 - openQCD-1.2 [M.Lüscher, S.Schaefer (2013)]

•
$$C_G = C_F = 1$$

Measurements

• r_0/a , Sommer scale

Computed as in [M.Donnellan, F.Knechtli, B.Leder, R.Sommer (2011)]

- ► HYP-smeared Wilson loops, 3-4 levels
- GEVP for static potential aV(r)
- $r^2 V'(r) \Big|_{r=r_0} = 1.65$
- t_0/a^2 , scale from gradient flow

[M.Lüscher (2010)]

- Wilson discretization of the gradient flow
- Clover discretization of the action density $E = \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu}$
- $\bullet t^2 \langle E(t) \rangle \big|_{t=t_0} = 0.3$
- Meson masses
 - From zero momentum correlation functions $f(x_0, y_0) = \sum_{x, y} \langle J(x) J^{\dagger}(y) \rangle$
 - Stochastic propagators
 - Local interpolating fields

$$J \in \{\underbrace{\bar{c}\gamma_5 c'}_{\to m_P}, \underbrace{\bar{c}\gamma_k c'}_{\to m_V} \ldots\}$$

Effective masses

- Use T symmetry: $g(x_0) = \frac{f(a,x_0) + f(T-a,T-x_0)}{2}$
- Effective mass: $a m_{\text{eff}}(x_0) = \log \left(\frac{g(x_0)}{g(x_0+a)} \right)$
- Black= m_P , blue= m_V , finest lattice

Systematical errors

•
$$a\mu = Z_P \times \frac{M_c}{\Lambda^{(2)}} \times \Lambda^{(2)} L_1 \times \frac{\overline{m}}{M} \times \frac{a}{L_1}$$

- $\frac{M_c}{\Lambda^{(2)}} = 4.87$
- Largest errors: Λ⁽²⁾ L₁, m/M
 common to all points
- κ_c mistuning
 - Maximal twist: m_{PCAC} = 0

•
$$\bar{m} = \frac{1}{Z_P} \sqrt{\mu^2 + Z_A^2 m_{PCAC}^2}$$

- Finite volume effects: negligible $\frac{L}{\sqrt{t_0}} > 10$
- Lattice artifacts: $O(a^2)$

Matching zero and two flavor QCD

- Linear & constant fits
 → compatible continuum values
- We work with value from linear fit

Matching zero and two flavor QCD

- Linear & constant fits
 → compatible continuum values
- We work with value from linear fit
- Black: $\sqrt{t_0} m_P$ Blue: $\sqrt{t_0} m_V$
- m_P linear in μ (like HQET)

Results: scales

Expected effect (decoupling): below 0.3%

 $\bullet\,$ No disagreement found at a precision of $\sim 2\%$

T.Korzec

28.07.2016 11/16

Results: masses

- Decoupling not applicable
- No effect resolvable at a precision of 0.7%
- Error dominated by $\Delta_{[\sqrt{t_0}m_P]_{cont}^{N_f=2}}$

- Errors in μ cancel to a large extent
- No effect resolvable at a precision of 0.2%

Results: RGI mass

• $\sim 5\%$ effect, but large errors

Results: strong coupling

• Strong coupling from the static force: $\alpha_{qq}(\mu) = \frac{1}{C_F} r^2 V'(r)$

- Significant effect at $\mu = 1/r \sim 1.6$ GeV and above
- Not a lattice artifact

Conclusions

Conclusions

- Effects of dynamical charm quarks
 - tiny in charmonium masses
 - significant in α_{qq} at large energies
 - quite sizable in the RGI mass
- Lattice artifacts appear to be $O(a^2)$ below a = 0.05 fm

Outlook

- Higher statistics
- Third lattice spacing with $N_f = 2 \Rightarrow$ smaller errors everywhere
- More observables
 - Charmonium spectrum
 - Matrix elements
 - Quenched strange quark $\rightarrow f_{D_s}$