

First Lattice QCD Study of Gluonic Transversity The 'Exotic Glue' Structure Function

Phiala Shanahan, Will Detmold

Massachusetts Institute of Technology

July 29, 2016

Outline

1 Motivation

- 2 Double Helicity Flip Gluon Structure Function: $\Delta(x,Q^2)$
- 3 Lattice Study
- 4 Results: ϕ meson
- 5 Summary

Motivation

Electron Ion Collider: The Next QCD Frontier

...

Understanding the glue that binds us all

'Exotic' Glue in the Nucleus

'Exotic' Glue in the Nucleus

'Exotic' Glue

Contributions to gluon observables that are not from nucleon degrees of freedom.

Exotic glue operator:

operator in nucleon = 0 operator in nucleus $\neq 0$

Outline

Motivation

2 Double Helicity Flip Gluon Structure Function: $\Delta(x,Q^2)$

3 Lattice Study

4 Results: ϕ meson

5 Summary

Jaffe and Manohar (1989)

Leading-twist, double-helicity-flipping structure function $\Delta(x,Q^2)$

- Clear signature for exotic glue in nuclei with spin ≥ 1: NO analogous twist-2 quark PDF → unambiguous
- In single hadrons: gluon transversity structure function
- Experimentally measurable (JLab LOI 2016)
- Moments are calculable on the lattice

First Lattice Study: arXiv:1606.04505 (PRD) • First moment of $\Delta(x, Q^2)$ in spin-1 ϕ meson

Double helicity flip amplitude:

$$\Delta(x, Q^2) = A_{+-,-+} = A_{-+,+-}$$

Phiala Shanahan (MIT)

Double helicity flip amplitude:

Photon helicity

$$\Delta(x, Q^2) = A_{+-, -} = A_{-+, +-}$$

Phiala Shanahan (MIT)

Exotic Glue in the Nucleus

Double helicity flip amplitude:

$$\Delta(x, Q^2) = A_{+-, -+} = A_{-+, +-}$$

Photon helicity Target helicity

Operator Product Expansion to relate to matrix elements of operator

$$\begin{aligned} \langle pE' | \mathcal{O}_{\mu\nu\{\mu_1\dots\mu_n\}} - &\operatorname{Tr} | pE \rangle \\ &= (-2i)^{n-2} \underline{S} \left[(p_{\mu}E'^*_{\mu_1} - p_{\mu_1}E'^*_{\mu}) (p_{\nu}E_{\mu_2} - p_{\mu_2}E_{\nu}) \right. \\ &+ (\mu \leftrightarrow \nu) \right] p_{\mu_3} \dots p_{\mu_n} \underline{A_n(Q^2)} \dots, \end{aligned}$$

$$\end{aligned}$$
Reduced Matrix Element

where

Symmetrize and trace subtract in
$$\mu_1, \dots, \mu_n$$

$$\mathcal{O}_{\mu\nu\mu_1\dots\mu_n} = \underline{S} \left[G_{\mu\mu_1} \overleftrightarrow{D}_{\mu_3} \dots \overleftrightarrow{D}_{\mu_n} G_{\nu\mu_2} \right]$$

Operator Product Expansion to relate to matrix elements of operator

$$\begin{aligned} \langle pE' | \mathcal{O}_{\mu\nu\{\mu_1\dots\mu_n\}} - \mathrm{Tr} | pE \rangle & \text{Symmetrize and trace subtract in } \mu_1, \dots, \mu_n \\ &= (-2i)^{n-2} \underline{S} \left[(p_\mu E'^*_{\mu_1} - p_{\mu_1} E'^*_{\mu}) (p_\nu E_{\mu_2} - p_{\mu_2} E_{\nu}) \right. \\ &+ (\mu \leftrightarrow \nu) \right] p_{\mu_3} \dots p_{\mu_n} \underline{A_n(Q^2)} \dots, \end{aligned}$$
Reduced Matrix Element

Optical theorem, dispersion relation for hadronic forward scatt. amplitude, analytic continuation give **moments**:

$$\int_0^1 dx x^{n-1} \Delta(x, Q^2) = \frac{\alpha_s(Q^2)}{3\pi} \frac{A_n(Q^2)}{n+2}, \quad n = 2, 4, 6 \dots,$$

Unpolarized scattering: symmetric piece of hadronic tensor $W_{\mu
u}$, ightarrow even n

Operator Product Expansion to relate to matrix elements of operator

$$\begin{split} \langle pE' | \mathcal{O}_{\mu\nu\{\mu_1\dots\mu_n\}} - & \operatorname{Tr} | pE \rangle \\ &= (-2i)^{n-2} \underline{S} \left[(p_{\mu}E_{\mu_1}'^* - p_{\mu_1}E_{\mu}'^*) (p_{\nu}E_{\mu_2} - p_{\mu_2}E_{\nu}) \right. \\ &+ (\mu \leftrightarrow \nu) \right] p_{\mu_3} \dots p_{\mu_n} \underline{A_n(Q^2)} \dots, \end{split}$$

$$\begin{aligned} & \operatorname{Reduced Matrix Element} \end{split}$$

Optical theorem, dispersion relation for hadronic forward scatt. amplitude, analytic continuation give **moments**:

Moment of Structure Function

$$\int_0^1 dx x^{n-1} \Delta(x, Q^2) = \frac{\alpha_s(Q^2)}{3\pi} \frac{A_n(Q^2)}{n+2}, \quad n = 2, 4, 6 \dots,$$

Unpolarized scattering: symmetric piece of hadronic tensor $W_{\mu
u}$, ightarrow even n

Operator Product Expansion to relate to matrix elements of operator

$$\begin{split} \langle pE' | \mathcal{O}_{\mu\nu\{\mu_1\dots\mu_n\}} - & \operatorname{Tr} | pE \rangle & \text{Symmetrize and trace subtract in } \mu_1, \dots, \mu_n \\ &= (-2i)^{n-2} \underline{S} \left[(p_{\mu}E'^*_{\mu_1} - p_{\mu_1}E'^*_{\mu})(p_{\nu}E_{\mu_2} - p_{\mu_2}E_{\nu}) \right. \\ &+ (\mu \leftrightarrow \nu) \right] p_{\mu_3} \dots p_{\mu_n} \underline{A_n(Q^2)} \dots, \\ & \text{Reduced Matrix Element} \end{split}$$

Optical theorem, dispersion relation for hadronic forward scatt. amplitude, analytic continuation give **moments**:

$$\underbrace{\int_{0}^{1} dx x^{n-1} \Delta(x, Q^2)}_{0} = \frac{\alpha_s(Q^2) A_n(Q^2)}{3\pi n+2}, \quad n = 2, 4, 6 \dots,$$

Unpolarized scattering: symmetric piece of hadronic tensor $W_{\mu\nu}\text{,} \rightarrow$ even n

Outline

Motivation

2 Double Helicity Flip Gluon Structure Function: $\Delta(x,Q^2)$

3 Lattice Study

4) Results: ϕ meson

5 Summary

Lattice Operators

First moment of
$$\Delta(x,Q^2)$$

Matrix elt. of $\mathcal{O}_{\mu\nu\mu_1\mu_2}=S[G_{\mu\mu_1}G_{\nu\mu_2}]$

- Relate $\mathcal{O}_{\mu
 u\mu_1\mu_2}$ to Euclidean operator
- Find linear combs. of Euclidean operator (with different indices) that
 - **(**) Transform irreducibly under appropriate representations of H(4)
 - Don't mix with same or lower-dimensional quark or gluon operators
 - ▶ 3 irreps. of dimension 2, 6, 2, i.e., 10 basis vectors
- Lattice simulation of matrix element in ϕ meson (spin-1)

L/a	T/a	β	am_l	am_s
24	64	6.1	-0.2800	-0.2450
a (fm)	L (fm)	T (fm)	m_π (MeV)	m_K (MeV)
0.1167(16)	2.801(29)	7.469(77)	450(5)	596(6)
m_ϕ (MeV)	$m_{\pi}L$	$m_{\pi}T$	$N_{ m cfg}$	$N_{ m src}$
1040(3)	6.390	17.04	1042	10^{5}

- All ϕ polarization states ({1,2,3} or {+,-,0})
 - on-diagonal
 - off-diagonal
- $\bullet\,$ Momenta up to (1,1,1) in lattice units (1 unit \sim 0.4GeV)
- Gradient Flow (100 steps to t=1) or HYP smearing of gauge fields in operator (2-5 steps)

L/a	T/a	β	am_l	am_s
24	64	6.1	-0.2800	-0.2450
a (fm)	L (fm)	T (fm)	m_π (MeV)	m_K (MeV)
0.1167(16)	2.801(29)	7.469(77)	450(5)	596(6)
m_ϕ (MeV)	$m_{\pi}L$	$m_{\pi}T$	$N_{ m cfg}$	$N_{ m src}$
1040(3)	6.390	17.04	1042	10^{5}

- All ϕ polarization states ({1,2,3} or {+,-,0})
 - on-diagonal
 - off-diagonal
- $\bullet\,$ Momenta up to (1,1,1) in lattice units (1 unit \sim 0.4GeV)
- Gradient Flow (100 steps to t=1) or HYP smearing of gauge fields in operator (2-5 steps)

L/a	T/a	eta	am_l	am_s
24	64	6.1	-0.2800	-0.2450
a (fm)	L (fm)	T (fm)	m_π (MeV)	m_K (MeV)
0.1167(16)	2.801(29)	7.469(77)	450(5)	596(6)
m_{ϕ} (MeV)	$m_{\pi}L$	$m_{\pi}T$	$N_{ m cfg}$	$N_{ m src}$
1040(3)	6.390	17.04	1042	10^{5}

- All ϕ polarization states ({1,2,3} or {+,-,0})
 - on-diagonal
 - off-diagonal
- $\bullet\,$ Momenta up to (1,1,1) in lattice units (1 unit \sim 0.4GeV)
- Gradient Flow (100 steps to t=1) or HYP smearing of gauge fields in operator (2-5 steps)

- All ϕ polarization states ({1,2,3} or {+,-,0})
 - on-diagonal
 - off-diagonal
- $\bullet\,$ Momenta up to (1,1,1) in lattice units (1 unit \sim 0.4GeV)
- Gradient Flow (100 steps to t=1) or HYP smearing of gauge fields in operator (2-5 steps)

Extraction of A_2

We calculate on the lattice:

 $\begin{bmatrix} \frac{C_{3\text{pt}}^{EE'}}{C_{2\text{pt}}^{EE'}} \end{bmatrix} (t_{\text{sink}}, \tau) \propto A_2, \qquad 0 \ll \tau \ll t_{\text{sink}}$

Extraction of A_2 : 3pt/2pt ratio

Some choice of irrep. and basis vector ϕ momentum (0,0,0)

Extraction of A_2 : 3pt/2pt ratio

Some choice of irrep. and basis vector ϕ momentum (p, p, p)

Extraction of A_2 : 3pt/2pt ratio

Extraction of A_2 : 3pt/2pt ratio

Outline

2 Double Helicity Flip Gluon Structure Function: $\Delta(x, Q^2)$

3 Lattice Study

4 Results: ϕ meson

Results: ϕ meson

ROBUST NON-ZERO SIGNAL

Proof of principle: similar signal in a nucleus \Leftrightarrow exotic glue

SYSTEMATICS IGNORED

- Quark mass effects
- Volume effects
- Discretization effects
- Renormalization

Explore gluon structure of ϕ meson more generally

$$|\delta q(x)| \le \frac{1}{2} \left(q(x) + \Delta q(x) \right)$$

Explore gluon structure of ϕ meson more generally

$$|\delta q(x)| \leq \frac{1}{2} \left(q(x) + \Delta q(x) \right)$$

Explore gluon structure of ϕ meson more generally

$$|\delta q(x)| \leq \frac{1}{2} \left(q(x) + \Delta q(x) \right)$$

Explore gluon structure of ϕ meson more generally

$$|\delta q(x)| \leq \frac{1}{2} \left(q(x) + \Delta q(x) \right)$$

Explore gluon structure of ϕ meson more generally

Soffer bound for transversity quark distributions:

$$|\delta q(x)| \leq \frac{1}{2} \left(q(x) + \Delta q(x) \right)$$

$$|A_2| \le \frac{1}{2}B_2$$

Explore gluon structure of ϕ meson more generally

Soffer bound for transversity quark distributions:

$$|\delta q(x)| \leq \frac{1}{2} \left(q(x) + \Delta q(x) \right)$$

$$C_{\mu\mu_1}G_{\nu\mu_2}$$

$$A_2 \leq \frac{1}{2}B_2$$

Explore gluon structure of ϕ meson more generally

Soffer bound for transversity quark distributions:

$$|\delta q(x)| \leq \frac{1}{2} \left(q(x) + \Delta q(x) \right)$$

$$\begin{array}{c} G_{\mu\mu_1}G_{\nu\mu_2} \\ \swarrow \\ A_2 \end{array} \leq \frac{1}{2} B_2 \end{array} \xrightarrow{G_{\mu_1\alpha}G_{\mu_2}}^{G_{\mu_1\alpha}G_{\mu_2}} \end{array}$$

Explore gluon structure of ϕ meson more generally

Soffer bound for transversity quark distributions:

$$|\delta q(x)| \leq \frac{1}{2} \left(q(x) + \Delta q(x) \right)$$

$$\begin{array}{ccc}
G_{\mu\mu_1}G_{\nu\mu_2} & G_{\mu_1\alpha}G_{\mu_2} \\
& & \\
\hline A_2 & \leq \frac{1}{2}B_2 & \widetilde{G}_{\mu_1\alpha}G_{\mu_2} \\
\end{array} \\
\left. \widetilde{G}_{\mu_1\alpha}G_{\mu_2} & \to 0 \\
\end{array}$$

If we assume approx. the same renormalisation for A_2 and B_2 :

First two moments of quark distributions: Soffer bound saturated to 80% (lattice QCD, Diehl *et al.* 2005)

Gluonic Form Factors and Radii: PRELIMINARY

Gluonic Form Factors and Radii: PRELIMINARY

Phiala Shanahan (MIT)

July 29, 2016 21 / 23

Outline

Motivation

- 2 Double Helicity Flip Gluon Structure Function: $\Delta(x,Q^2)$
- 3 Lattice Study
- 4 Results: ϕ meson

Summary

ROBUST NON-ZERO signal for 'exotic glue' operator in the ϕ meson

Proof of principle: similar signal in a nucleus \Leftrightarrow exotic glue

Explore gluon structure of hadrons more generally e.g., Soffer bound analogue

BUT: SYSTEMATICS IGNORED ⇒ no physically meaningful number (yet)