
pMR: A high-performance communication library
Peter Georg, Daniel Richtmann, and Tilo Wettig
Department of Physics, University of Regensburg

Motivation

▶ Previous work on DD-𝛼AMG on QPACE 2/Xeon Phi has shown that after code
optimizations, off-chip communication became dominant [1]

▶ This applies not only to DD-𝛼AMG but also to other Lattice QCD applications
and beyond

▶ Encountered issues with various MPI implementations
▷ Context switches due to non-pinnable MPI-internal threads
▷ Missing support for non-standard network topologies

Objectives

▶ Use persistent communication
▶ Use one-sided communication (RDMA hardware capabilities)
▶ Reduce software-induced latency to a bare minimum
▶ No extra thread pool
▶ Fast adaptation to new hardware
▶ Support for exotic network topologies
▶ Vendor independent
▶ Optimize for typical lattice QCD communication patterns
▶ De facto drop-in replacement for MPI

Implementation

▶ Features
▷ Buffered and unbuffered point-to-point data transfers
▷ Global reduction with user-defined functions (e.g., global sum)
▷ Auxiliary functions for communicator setup and usage

▶ Modern C++11
▷ Avoid code dependencies as far as possible
▷ Separate code for each supported network provider (IB verbs, Linux CMA)
▷ Can easily add or remove providers

▶ Limited C interface for compatibility with existing software
▶ Allow for compile-time optimization

▷ Set provider and topology settings at compile time
⇒ Each binary is cluster specific

▷ No polymorphism (avoid vtable lookup)

Code comparison – MPI (left) vs. pMR (right)

MPI_Request sendRequest;

MPI_Request recvRequest;

for(i = start; i != end; ++i)
{

// Computation

MPI_Irecv(recvBuffer , ...);
MPI_Isend(sendBuffer , ...);

// Computation

MPI_Wait(sendRequest , ...);
MPI_Wait(recvRequest , ...);

// Computation
}

// Setup persistent communication channel
pMR::Connection connection(pMR::Target (...));

pMR::SendWindow <float >
sendWindow(connection , sendBuffer , count);

pMR::RecvWindow <float >
recvWindow(connection , recvBuffer , count);

for(i = start; i != end; ++i)
{

// Computation

recvWindow.init();
sendWindow.init();

// Computation

sendWindow.post();
recvWindow.post();

// Computation

sendWindow.wait();
recvWindow.wait();

// Computation
}

References

[1] S. Heybrock et al., Adaptive algebraic multigrid on SIMD architectures, PoS
LATTICE2015 (2016) [arXiv:1512.04506].

[2] A. Frommer et al., Adaptive Aggregation Based Domain Decomposition Multigrid for
the Lattice Wilson Dirac Operator, SIAM J. Sci. Comput. 36 (2014) A1581
[arXiv:1303.1377].

[3] M. Bruno et al., Simulation of QCD with N𝑓 = 2 + 1 flavors of non-perturbatively
improved Wilson fermions, JHEP 02 (2015) 043 [arXiv:1411.3982].

[4] P. Arts et al., QPACE 2 and Domain Decomposition on the Intel Xeon Phi, PoS
LATTICE2014 (2015) 021 [arXiv:1502.04025].

Real-world benchmark: DD-𝜶AMG [2]

▶ Choose a test case that is communication bound: DD-𝛼AMG coarse-grid solve
▷ In current implementation, coarse grid is spread over entire machine
▷ In future implementation, coarse grid could be mapped onto subset of

machine, but coarse-grid solve would still be communication bound

Modifications to halo exchange code

▶ Use buffered send and receive for all exchanges
▷ Allows for the re-use of buffers

⇒ Persistent communication possible without major code changes
▷ Downside: doubles the overhead for copies from/to buffers

▶ Replace MPI calls with corresponding pMR calls
▷ Only minor code changes

Results: Benchmark details

▶ CLS lattice: 483 × 96, 𝛽 = 3.4, 𝑚𝜋 = 220MeV, 𝑎 = 0.086 fm [3]
▷ Small lattice chosen intentionally to see breakdown of strong scaling

▶ QPACE 2: Intel Xeon Phi cluster [4]
▷ Four Intel Xeon Phis per node
▷ Infiniband FDR 1D Flexible Hyperblock Torus Topology
▷ Uses Intel Xeon Phis for computation exclusively (native programming model)

Results: Halo exchange on coarse grid for one solve

32 64 96 128 192 256
0

0.5

1

1.5

2

Number of Xeon Phis

W
all

-cl
oc

k
tim

ei
n
s

MPI pMR

Results: Coarse grid contributions – MPI (left) vs. pMR (right)

32 64 96 128 192 2560

20

40

60

80

100

Number of Xeon Phis

Co
nt

rib
ut

ion
in

%

On-chip Halo Exchange Global Sums

Conclusion

▶ pMR can be used in existing software with only minor code changes
▶ Reduces impact of communication without algorithmic changes

Future opportunities

▶ Use pMR for global sums in DD-𝛼AMG
▶ Use pMR in other communication-bound applications

Interested?

▶ Checkout repository NOW: https://rqcd.ur.de:8443/gep21271/pmr
▶ Licensed under Apache License 2.0
▶ Will be opened up for contributions from anybody (Github)

Supported by the German Research Foundation (DFG) in the framework of SFB/TR-55 peter.georg@ur.de

http://arxiv.org/abs/1512.04506
http://dx.doi.org/10.1137/130919507
http://arxiv.org/abs/1303.1377
http://dx.doi.org/10.1007/JHEP02(2015)043
http://arxiv.org/abs/1411.3982
http://arxiv.org/abs/1502.04025
https://rqcd.ur.de:8443/gep21271/pmr

