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in D=3+1 and D=2+1 SU(N) gauge theories
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e D=2-+1, fundamental flux
e D=2+41, higher rep flux

e D=3+1, fundamental flux



calculate the energy spectrum of a confining flux tube winding around a spatial

torus of length [, using correlators of p; = 0 Polyakov loops (Wilson lines):

(I()1(0) = 32, en(le 50T 75 exp{—Eo(l)7}

in pictures
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a flux tube sweeps out a cylindrical [ X 7 surface S --- integrate over these world

sheets with an effective string action f dSe SesrlS]
cyl=IlxT



Lattice calculations from:

D=2+1, f: A.Athenodorou,B.Bringoltz, MT: 1103.5854
D=3+1, f: AA,BB,MT: 1007.4720 and AA,MT: in preparation
D=2+1, f: AA,MT: 1303.5946

D=2+1, f: AAMT: 1602.07634

also: AA,BB,MT: 0709.0693, 0812.0334; BB,MT: 0802.1490

also open strings etc: Torino group — Caselle, Gliozzi, ...

Effective string theory:

Luscher, Symanzik, Weisz: early '80s — O(1/l) universal Luscher correction

Luscher, Weisz: 2004: O(1/1%) — (sometimes) universal term (also Drummond)

O. Aharony+Karzbrun, 0903.1927; +Field 1008.2636 +Klinghoffer 1008.2648;
+Field,Klinghoffer 1111.5757; +Dodelson 1111.5758: +Komargodski: 1302.6257 — all
universal corrections

S.Dubovsky, R. Flauger, V. Gorbenko 1203.4932, 1205.6805, 1301.2325, 1404.0037,
+PC,AM,SS 1411.0703 SD,VG 1511.01908 — medium [ and integrability

see also Torino group — Gliozzi, Tateo et al, ...



SU(6), p=0; P=+,e, P=-0. ar/o ~ 0.086,D=2+1

Vertical line is deconfining length. Solid curves are NG predictions.



Nambu-Goto ‘free string’ theory
Z = [DSe Al

massless ‘phonons’ carry momentum and produce energy gaps:

E2(1) = (c1)* 4 8o (% — %) + p?.

p = 2mq/l momentum along string;
nr,(k),nr(k) = number left,right moving ‘phonons’ of momentum 2nk /I:
Np.r = > 1>onL,rR(k)k = sum left and right ‘phonon’ momenta:

PCLT’ity _ (_1)number phonons; p= 27T(NL o NR)/Z

Note: E(l) # ol+energy free phonons : i.e. the D = 1 + 1 phonon field theory is
not a free field theory.



for long strings expand NG in powers of 1/0l?: e.g.

Tr — 1/2 Tr —
Eo(l) = ol (1 — =(D=2) ;2) =gl - ™22 L 0(1/13) 120 > 3/n(D - 2)

similarly for excited states once [?c > 8mn

Universal terms for any Se¢:

o) 2= g TO=D DA 1 DD 1 (1)

" 61 2 ol 432 o205 7
o O (%) Luscher correction, ~ 1980
o O (%3) Luscher, Weisz; Drummond, ~ 2004
o O (%5) Aharony et al, ~ 2009-10

and similar results for E,, (1), but only to O(1/13) in D =3+ 1

— identical to NG expansion up to explicit O(1/17) corrections in D = 2 + 1; extra
O(1/1%) universal correction in D = 3 + 1



SU(6), p=0; P=+,e, P=-0. ay/o ~ 0.086,D=2+1

Solid curves are NG; dashed ones are universal terms up to O(1/1°).
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Best fits to SU(4) k = 1 ground state energy with Nambu-Goto plus a O(1/1")

correction.
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Best fits to SU(4) k = 1 ground state energy using Nambu-Goto with a O(1/17)

correction: p-value for all [ € [13,60], e, and for [ € [13,18], o, versus 7.
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Best fits to SU(4) k = 2A ground state energy with Nambu-Goto plus a O(1/1")

correction. Vertical line indicates the deconfining transition.
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Best fits to SU(4) k = 2A ground state energy using Nambu-Goto with a O(1/17)
correction: p-value for all [ € [13,60], e, and for I € [13,18], o, versus «. Also fits
[ € [14,18], U, that exclude the shortest flux tube.
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this and SU(6) and SU(8) =
=7

confirming prediction of universal terms through O(1/1°)

BUT: why such good agreement with NG for excited states at smaller [7

D =1+ 1 phonon field theory is approximately integrable (Dubovsky et al)
s
and dgagrr = $/80 in Thermodynamic Bethe Ansatz (~ Luscher finite V)

leads to the finite volume spectrum :
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SU(6), lowest p=0 P=+ states d=extracted phase shift
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So, massless phonons describe the flux tube spectrum down to small [ ...

BUT where are the massive modes, e.g. when [ ~ width flux tube?

go to k-strings where we know there must be massive modes associated

with binding of the £ fundamentals
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SU(6): k = 3A ground state and lowest excited states with p =0 and P = =+, e, 0;

solid curves are NG predictions.
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E1(l) — Eo(l) >~ p ind of [ : massive mode?

TBA analysis (Dubovsky et al) : spectrum — d=extracted phase shift
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D=3+1 : fundamental flux in SU(3) with a+/co ~ 0.20, 0.13

phonons have J = 41 and (when free) p = 2wk /I: afk'_,a,]:

flux along =: P :y,z — y, —z i.e. a: — a;

flux along x: P, : x — —x and C i.e. a; — atk

17



p = 0, ground and first excited energy levels (NG: Ny, = Nr = 1)
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as above but with next excited 0~ — as well
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as above but with axion in theory fit to 0=~ and 0T
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with world-sheet 0~ resonance and other lines = TBA + dpg

J=0,P =+/— are blue/red. J = 2 are green AFE = FE — ol;
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Phase shift from: J = 2 top; J = 01 middle; J = 0~ bottom
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solid line: prediction with axion. dashed line: prediction without axion
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N-dependence of axion resonance ‘mass’ (preliminary) SU(2) — SU(12)
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Conclusions

e the remarkably simple spectrum of confining flux tubes uncovered through
lattice calculations, has motivated powerful theoretical developments in
understanding both long (universality ...) and shorter (near-integrability ...) flux

tubes within effective string and world sheet frameworks

e in D = 2 + 1 lattice calculations are now able to test convincingly expectations

about the power of [ at which non-universal terms first appear

e TBA analysis of D = 1+ 1 world sheet theory =— in D = 2 4+ 1 massive
resonance associated with k-string binding and in D = 3 4+ 1 massive 07—
resonance in fundamental flux tube spectrum, nicely explained by a topological

(self-intersection) ‘axionic’ field and both masses are p ~ my+4 /2

e Lack of other massive modes in fundamental flux tube (e.g. intrinsic flux tube
width) suggests these modes are heavy/weakly coupled = dynamics of flux

tubes remarkably simple to an excellent approximation. (But need to do
D = 3 + 1 better.)
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