The spectra of (closed) confining flux tubes in $\mathrm{D}=3+1$ and $\mathrm{D}=2+1 \mathrm{SU}(\mathrm{N})$ gauge theories

Michael Teper (Oxford) - Lattice 2016

- $\mathrm{D}=2+1$, fundamental flux
- $\mathrm{D}=2+1$, higher rep flux
- $\mathrm{D}=3+1$, fundamental flux
calculate the energy spectrum of a confining flux tube winding around a spatial torus of length l, using correlators of $p_{\perp}=0$ Polyakov loops (Wilson lines):

$$
\left\langle l_{p}^{\dagger}(\tau) l_{p}(0)\right\rangle=\sum_{n} c_{n}(l) e^{-E_{n}(l) \tau} \stackrel{\tau \rightarrow \infty}{\propto} \exp \left\{-E_{0}(l) \tau\right\}
$$

in pictures

a flux tube sweeps out a cylindrical $l \times \tau$ surface $S \cdots$ integrate over these world sheets with an effective string action $\propto \int_{c y l=l \times \tau} d S e^{-S_{\text {eff }}[S]}$

Lattice calculations from:
$\mathrm{D}=2+1, f:$ A.Athenodorou,B.Bringoltz,MT: 1103.5854
$\mathrm{D}=3+1, f: \mathrm{AA}, \mathrm{BB}, \mathrm{MT}: 1007.4720$ and AA,MT: in preparation
$\mathrm{D}=2+1, f: \mathrm{AA}, \mathrm{MT}: 1303.5946$
$\mathrm{D}=2+1, f: \mathrm{AA}, \mathrm{MT}: 1602.07634$
also: AA,BB,MT: 0709.0693, 0812.0334; BB,MT: 0802.1490
also open strings etc: Torino group - Caselle, Gliozzi, ...

Effective string theory:

Luscher, Symanzik, Weisz: early ' 80 s $-O(1 / l)$ universal Luscher correction
Luscher, Weisz: 2004: $O\left(1 / l^{3}\right)$ - (sometimes) universal term (also Drummond)
O. Aharony+Karzbrun, 0903.1927; +Field 1008.2636 +Klinghoffer 1008.2648;
+Field,Klinghoffer 1111.5757; +Dodelson 1111.5758: +Komargodski: 1302.6257 - all universal corrections
S.Dubovsky, R. Flauger, V. Gorbenko 1203.4932, 1205.6805, 1301.2325, 1404.0037, +PC,AM,SS 1411.0703 SD,VG 1511.01908 - medium l and integrability
see also Torino group - Gliozzi, Tateo et al, ...

$$
\mathrm{SU}(6), \mathrm{p}=0 ; \mathrm{P}=+, \bullet, \mathrm{P}=-, \circ .
$$

$$
a \sqrt{ } \sigma \simeq 0.086, \mathrm{D}=2+1
$$

Vertical line is deconfining length. Solid curves are NG predictions.

Nambu-Goto 'free string' theory

$$
\mathcal{Z}=\int \mathcal{D} S e^{-\kappa A[S]}
$$

massless 'phonons' carry momentum and produce energy gaps:

$$
E^{2}(l)=(\sigma l)^{2}+8 \pi \sigma\left(\frac{N_{L}+N_{R}}{2}-\frac{D-2}{24}\right)+p^{2} .
$$

$p=2 \pi q / l$ momentum along string;
$n_{L}(k), n_{R}(k)=$ number left,right moving 'phonons' of momentum $2 \pi k / l$:
$N_{L, R}=\sum_{k>0} n_{L, R}(k) k=$ sum left and right 'phonon' momenta:

$$
\text { Parity }=(-1)^{\text {number phonons } ;} \quad p=2 \pi\left(N_{L}-N_{R}\right) / l
$$

Note: $E(l) \neq \sigma l+$ energy free phonons : i.e. the $D=1+1$ phonon field theory is not a free field theory.
for long strings expand $N G$ in powers of $1 / \sigma l^{2}$: e.g.

$$
E_{0}(l)=\sigma l\left(1-\frac{\pi(D-2)}{3} \frac{1}{\sigma l^{2}}\right)^{1 / 2}=\sigma l-\frac{\pi(D-2)}{6 l}+O\left(1 / l^{3}\right) \quad l^{2} \sigma \geq 3 / \pi(D-2)
$$

similarly for excited states once $l^{2} \sigma \geq 8 \pi n$

Universal terms for any $S_{\text {eff }}$:

$$
E_{0}(l) \stackrel{l \rightarrow \infty}{=} \sigma l-\frac{\pi(D-2)}{6 l}-\frac{\{\pi(D-2)\}^{2}}{72} \frac{1}{\sigma l^{3}}-\frac{\{\pi(D-2)\}^{3}}{432} \frac{1}{\sigma^{2} l^{5}}+O\left(\frac{1}{l^{7}}\right)
$$

- $O\left(\frac{1}{l}\right)$

Luscher correction, ~ 1980

- $O\left(\frac{1}{l^{3}}\right)$

Luscher, Weisz; Drummond, ~ 2004

- $O\left(\frac{1}{l^{5}}\right)$

Aharony et al, $\sim 2009-10$
and similar results for $E_{n}(l)$, but only to $O\left(1 / l^{3}\right)$ in $D=3+1$

- identical to NG expansion up to explicit $O\left(1 / l^{7}\right)$ corrections in $D=2+1$; extra $O\left(1 / l^{5}\right)$ universal correction in $D=3+1$

$$
\mathrm{SU}(6), \mathrm{p}=0 ; \mathrm{P}=+, \bullet, \mathrm{P}=-, \circ .
$$

$$
a \sqrt{ } \sigma \simeq 0.086, \mathrm{D}=2+1
$$

Solid curves are NG; dashed ones are universal terms up to $O\left(1 / l^{5}\right)$.

Best fits to $\operatorname{SU}(4) k=1$ ground state energy with Nambu-Goto plus a $O\left(1 / l^{7}\right)$ correction.

Best fits to $\mathrm{SU}(4) k=1$ ground state energy using Nambu-Goto with a $O\left(1 / l^{\gamma}\right)$ correction: p-value for all $l \in[13,60]$, \bullet, and for $l \in[13,18]$, ०, versus γ.

Best fits to $\operatorname{SU}(4) k=2 A$ ground state energy with Nambu-Goto plus a $O\left(1 / l^{7}\right)$ correction. Vertical line indicates the deconfining transition.

Best fits to $\operatorname{SU}(4) k=2 A$ ground state energy using Nambu-Goto with a $O\left(1 / l^{\gamma}\right)$ correction: p-value for all $l \in[13,60]$, \bullet, and for $l \in[13,18]$, \circ, versus γ. Also fits $l \in[14,18], \square$, that exclude the shortest flux tube.
this and $S U(6)$ and $S U(8) \Longrightarrow$

$$
\gamma \geq 7
$$

confirming prediction of universal terms through $O\left(1 / l^{5}\right)$

BUT: why such good agreement with NG for excited states at smaller l ?
$D=1+1$ phonon field theory is approximately integrable (Dubovsky et al)
\qquad
and $\delta_{G G R T}=s / 8 \sigma$ in Thermodynamic Bethe Ansatz (\sim Luscher finite V) leads to the finite volume spectrum :
$\mathrm{SU}(6)$, lowest $\mathrm{p}=0 \mathrm{P}=+$ states $\delta=$ extracted phase shift

$\Delta E=E-\sigma l, R=l, l_{s}=1 / \sqrt{ } \sigma ; \quad \delta$-curve GGRT phase shift.

So, massless phonons describe the flux tube spectrum down to small $l \ldots$
BUT where are the massive modes, e.g. when $l \sim$ width flux tube?
\Longrightarrow
go to k-strings where we know there must be massive modes associated with binding of the k fundamentals

$\mathrm{SU}(6): k=3 A$ ground state and lowest excited states with $p=0$ and $P= \pm, \bullet, \circ ;$ solid curves are NG predictions.
$E_{1}(l)-E_{0}(l) \simeq \mu$ ind of $l:$ massive mode?
TBA analysis (Dubovsky et al) : spectrum $\longrightarrow \delta=$ extracted phase shift

\Longrightarrow resonant state with $\mu \sim m_{G} / 2$
$\mathrm{D}=3+1$: fundamental flux in $\operatorname{SU}(3)$ with $a \sqrt{ } \sigma \simeq 0.20,0.13$
phonons have $J= \pm 1$ and (when free) $p=2 \pi k / l: a_{k}^{+}, a_{k}^{-}$
flux along $x: P_{t}: y, z \rightarrow y,-z$ i.e. $a_{k}^{+} \rightarrow a_{k}^{-}$
flux along $x: P_{l}: x \rightarrow-x$ and C i.e. $a_{k}^{+} \rightarrow a_{-k}^{+}$
$p=0$, ground and first excited energy levels (NG: $N_{L}=N_{R}=1$)

purple $0^{--} ;$red 0^{++}; orange, blue $J=2$.
as above but with next excited 0^{--}as well

as above but with axion in theory fit to 0^{--}and 0^{++}

with world-sheet 0^{-}resonance and other lines $=\mathrm{TBA}+\delta_{P S}$

$$
J=0, P=+/- \text { are blue } / \text { red. } J=2 \text { are green } \quad \Delta E=E-\sigma l ;
$$

Phase shift from: $J=2$ top; $J=0^{+}$middle; $J=0^{-}$bottom

solid line: prediction with axion. dashed line: prediction without axion
N-dependence of axion resonance 'mass' (preliminary)

$$
\mathrm{SU}(2)-\mathrm{SU}(12)
$$

Note: $M_{A} \stackrel{N \rightarrow \infty}{\sim} 0.5 M_{G, 0^{++}}$

Conclusions

- the remarkably simple spectrum of confining flux tubes uncovered through lattice calculations, has motivated powerful theoretical developments in understanding both long (universality ...) and shorter (near-integrability ...) flux tubes within effective string and world sheet frameworks
- in $D=2+1$ lattice calculations are now able to test convincingly expectations about the power of l at which non-universal terms first appear
- TBA analysis of $D=1+1$ world sheet theory \Longrightarrow in $D=2+1$ massive resonance associated with k-string binding and in $D=3+1$ massive 0^{--} resonance in fundamental flux tube spectrum, nicely explained by a topological (self-intersection) 'axionic' field and both masses are $\mu \sim m_{0^{++}} / 2$
- Lack of other massive modes in fundamental flux tube (e.g. intrinsic flux tube width) suggests these modes are heavy/weakly coupled \Longrightarrow dynamics of flux tubes remarkably simple to an excellent approximation. (But need to do $D=3+1$ better.)

